时间:2021-05-22
Prometheus 为开发这提供了客户端工具,用于为自己的中间件开发Exporter,对接Prometheus 。
目前支持的客户端
以go为例开发自己的Exporter
依赖包的引入
工程结构
[root@node1 data]# tree exporter/
exporter/
├── collector
│ └── node.go
├── go.mod
└── main.go
引入依赖包
require ( github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd // indirect github.com/modern-go/reflect2 v1.0.1 // indirect github.com/prometheus/client_golang v1.1.0 //借助gopsutil 采集主机指标 github.com/shirou/gopsutil v0.0.0-20190731134726-d80c43f9c984)main.go
package mainimport ( "cloud.io/exporter/collector" "fmt" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/client_golang/prometheus/promhttp" "net/http")func init() { //注册自身采集器 prometheus.MustRegister(collector.NewNodeCollector())}func main() { http.Handle("/metrics", promhttp.Handler()) if err := http.ListenAndServe(":8080", nil); err != nil { fmt.Printf("Error occur when start server %v", err) }}为了能看清结果我将默认采集器注释,位置registry.go
func init() { //MustRegister(NewProcessCollector(ProcessCollectorOpts{})) //MustRegister(NewGoCollector())}/collector/node.go
代码中涵盖了Counter、Gauge、Histogram、Summary四种情况,一起混合使用的情况,具体的说明见一下代码中。
package collectorimport ( "github.com/prometheus/client_golang/prometheus" "github.com/shirou/gopsutil/host" "github.com/shirou/gopsutil/mem" "runtime" "sync")var reqCount int32var hostname stringtype NodeCollector struct { requestDesc *prometheus.Desc //Counter nodeMetrics nodeStatsMetrics //混合方式 goroutinesDesc *prometheus.Desc //Gauge threadsDesc *prometheus.Desc //Gauge summaryDesc *prometheus.Desc //summary histogramDesc *prometheus.Desc //histogram mutex sync.Mutex}//混合方式数据结构type nodeStatsMetrics []struct { desc *prometheus.Desc eval func(*mem.VirtualMemoryStat) float64 valType prometheus.ValueType}//初始化采集器func NewNodeCollector() prometheus.Collector { host,_:= host.Info() hostname = host.Hostname return &NodeCollector{ requestDesc: prometheus.NewDesc( "total_request_count", "请求数", []string{"DYNAMIC_HOST_NAME"}, //动态标签名称 prometheus.Labels{"STATIC_LABEL1":"静态值可以放在这里","HOST_NAME":hostname}), nodeMetrics: nodeStatsMetrics{ { desc: prometheus.NewDesc( "total_mem", "内存总量", nil, nil), valType: prometheus.GaugeValue, eval: func(ms *mem.VirtualMemoryStat) float64 { return float64(ms.Total) / 1e9 }, }, { desc: prometheus.NewDesc( "free_mem", "内存空闲", nil, nil), valType: prometheus.GaugeValue, eval: func(ms *mem.VirtualMemoryStat) float64 { return float64(ms.Free) / 1e9 }, }, }, goroutinesDesc:prometheus.NewDesc( "goroutines_num", "协程数.", nil, nil), threadsDesc: prometheus.NewDesc( "threads_num", "线程数", nil, nil), summaryDesc: prometheus.NewDesc( "summary_http_request_duration_seconds", "summary类型", []string{"code", "method"}, prometheus.Labels{"owner": "example"}, ), histogramDesc: prometheus.NewDesc( "histogram_http_request_duration_seconds", "histogram类型", []string{"code", "method"}, prometheus.Labels{"owner": "example"}, ), }}// Describe returns all descriptions of the collector.//实现采集器Describe接口func (n *NodeCollector) Describe(ch chan<- *prometheus.Desc) { ch <- n.requestDesc for _, metric := range n.nodeMetrics { ch <- metric.desc } ch <- n.goroutinesDesc ch <- n.threadsDesc ch <- n.summaryDesc ch <- n.histogramDesc}// Collect returns the current state of all metrics of the collector.//实现采集器Collect接口,真正采集动作func (n *NodeCollector) Collect(ch chan<- prometheus.Metric) { n.mutex.Lock() ch <- prometheus.MustNewConstMetric(n.requestDesc,prometheus.CounterValue,0,hostname) vm, _ := mem.VirtualMemory() for _, metric := range n.nodeMetrics { ch <- prometheus.MustNewConstMetric(metric.desc, metric.valType, metric.eval(vm)) } ch <- prometheus.MustNewConstMetric(n.goroutinesDesc, prometheus.GaugeValue, float64(runtime.NumGoroutine())) num, _ := runtime.ThreadCreateProfile(nil) ch <- prometheus.MustNewConstMetric(n.threadsDesc, prometheus.GaugeValue, float64(num)) //模拟数据 ch <- prometheus.MustNewConstSummary( n.summaryDesc, 4711, 403.34, map[float64]float64{0.5: 42.3, 0.9: 323.3}, "200", "get", ) //模拟数据 ch <- prometheus.MustNewConstHistogram( n.histogramDesc, 4711, 403.34, map[float64]uint64{25: 121, 50: 2403, 100: 3221, 200: 4233}, "200", "get", ) n.mutex.Unlock()}执行的结果http://127.0.0.1:8080/metrics
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
中间件Django中的中间件是一个轻量级、底层的插件系统,可以介入Django的请求和响应处理过程,修改Django的输入或输出。中间件的设计为开发者提供了一种
本文实例讲述了Laravel框架实现利用中间件进行操作日志记录功能。分享给大家供大家参考,具体如下:利用中间件进行操作日志记录过程:1、创建中间件phparti
本文为大家分享了nodejs个人博客开发的入口文件,具体内容如下错误处理中间件定义错误处理中间件必须使用4个参数,否则会被作为普通中间件app
Django中的中间件是一个轻量级、底层的插件系统,可以介入Django的请求和响应处理过程,修改Django的输入或输出。中间件的设计为开发者提供了一种无侵入
环境Win10Python3.6.6Django2.1.3中间件作用中间件用于全局修改Django的输入或输出。中间件常见用途缓存会话认证日志记录异常中间件执行