时间:2021-05-22
python + OpenCV
图像礼帽
图像礼帽 也叫图像顶帽
礼帽图像=原始图像-开运算图像
得到噪声图像
开运算:先腐蚀再膨胀
使用对象:二值图像
使用方法:morphologyEx
cv2.MORPH_TOPHAT
结果=cv2.morphologyEx(原始图像,cv2.MORPH_TOPHAT,卷积核)
卷积核示例:k=np.ones((10,10),np.uint8)
图像黑帽
黑帽图像=闭运算图像-原始图像
得到图像内部的小孔,或前景色的小黑点
闭运算:对图像进行先膨胀,再腐蚀。有助于关闭前景物体上的小孔,或者小黑点。
使用对象:二值图像
使用方法:morphologyEx
cv2.MORPH_BLACKHAT
结果=cv2.morphologyEx(原始图像,cv2.MORPH_BLACKHAT,卷积核)
卷积核示例:k=np.ones((10,10),np.uint8)
到此这篇关于opencv 图像礼帽和图像黑帽的实现的文章就介绍到这了,更多相关opencv 图像礼帽和图像黑帽内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例为大家分享了Opencv实现图像灰度线性变换的具体代码,供大家参考,具体内容如下通过图像灰度线性变换提高图像对比度和亮度,原图像为src,目标图像为ds
本文实例为大家分享了opencv实现图像旋转效果的具体代码,供大家参考,具体内容如下图像旋转:在opencv中首先根据旋转角度和中心获取旋转矩阵,然后根据旋转矩
本文实例为大家分享了利用python和OpenCV实现图像拼接,供大家参考,具体内容如下python+OpenCV实现imagestitching在最新的Ope
主要讲解Python调用OpenCV实现图像平滑,包括四个算法:均值滤波、方框滤波、高斯滤波和中值滤波.给图像增加噪声:importcv2importnumpy
本文实例为大家分享了OpenCV实现拼接图像的具体方法,供大家参考,具体内容如下用iphone拍摄的两幅图像:拼接后的图像:相关代码如下://读取图像Matle