时间:2021-05-22
python的PIL库简直好用的不得了,PIL下面的Image库更是封装了很多对图片处理的函数,关于Image库的介绍和使用,看这里:http://effbot.org/imagingbook/image.htm
这里用我半个月前看到的一篇博客写的demo作为背景,做一下图片的合成
图片可以看作是很多像素点组成的,每个像素点都是一个RGB颜色,(red, green, blue), 那么合成两张照片就有办法了,我们可以在一张新的RGB色的图片里一个像素点取图片一的对应位置的像素,下一个像素点取图片二的像素,直到遍历完成,代码如下:
from PIL import Image##这里采用传入图片地址调用此函数#这个方法目前不支持按比例合成,默认为1:1#各取一个像素点合并,传入的参数为两张图片的地址def merge1(img1_address,img2_addess): status=100 #状态码100为正常 # 200为地址错误 try: img1=Image.open(img1_address) img2=Image.open(img2_address) except: status=200 img_new="" else: width=min(img1.size[0],img2.size[0]) height=min(img1.size[1],img2.size[1]) print(width,height) img_new = Image.new('RGB',(width,height)) for x in range(width): for y in range(height): if y%2==0: pixel=img1.getpixel((x,y)) img_new.putpixel((x,y),pixel) else: pixel=img2.getpixel((x,y)) img_new.putpixel((x,y),pixel) finally: return img_new,status上述代码会返回一张新的图片和一个状态码,接受的时候用两个变量接受
另一种方法是每个像素点各取%50的原图片的颜色,然后把像素点放置在对应位置,为了功能更加强大,我把两者的混合比例设为可调,默认是50%的比例,代码如下:
from PIL import Image#将像素点按比例取色,然后合成一个新像素点#传入的参数为两张图片的地址和比例#如果两者之和不为1则以第一个图片的比例为准def merge2(img1_address,img2_address,percent1=0.50,percent2=0.50): status=100 #状态码100为正常 # 200为地址错误 try: img1=Image.open(img1_address) img2=Image.open(img2_address) except: status=200 img_new="" else: if percent1+percent2!=1: percent2=1-percent1 width = min(img1.size[0],img2.size[0]) height = min(img1.size[1],img2.size[1]) img_new = Image.new('RGB',(width,height)) for x in range(width): for y in range(height): r1,g1,b1=img1.getpixel((x,y)) r2,g2,b2=img2.getpixel((x,y)) r=int(percent1*r1+percent2*r2) g=int(percent1*g1+percent2*g2) b=int(percent1*b1+percent2*b2) img_new.putpixel((x,y),(r,g,b)) finally: return img_new,status返回的参数与上述相同
如果想要保存图片可用image.save()函数保存
总的代码如下:
from PIL import Image##这里采用传入图片地址调用此函数#这个方法目前不支持按比例合成,默认为1:1#各取一个像素点合并,传入的参数为两张图片的地址def merge1(img1_address, img2_addess, direct): status=100 #状态码100为正常 # 200为地址错误 try: img1=Image.open(img1_address) img2=Image.open(img2_address) except: status=200 img_new="" else: width=min(img1.size[0], img2.size[0]) height=min(img1.size[1], img2.size[1]) print(width,height) img_new = Image.new('RGB',(width, height)) for x in range(width): for y in range(height): if y%2 == 0: pixel = img1.getpixel((x,y)) img_new.putpixel((x,y), pixel) else: pixel = img2.getpixel((x,y)) img_new.putpixel((x,y), pixel) finally: return status#将像素点按比例取色,然后合成一个新像素点#传入的参数为两张图片的地址和比例#如果两者之和不为1则以第一个图片的比例为准def merge2(img1_address, img2_address, direction, percent1): status = 100 #状态码100为正常 # 200为地址错误 try: img1 = Image.open(img1_address) img2 = Image.open(img2_address) except: status = 200 img_new = "" else: percent2 = 1 - percent1 width = min(img1.size[0], img2.size[0]) height = min(img1.size[1], img2.size[1]) img_new = Image.new('RGB', (width,height)) for x in range(width): for y in range(height): r1,g1,b1=img1.getpixel((x,y)) r2,g2,b2=img2.getpixel((x,y)) r = int(percent1 * r1 + percent2 * r2) g = int(percent1 * g1 +percent2 * g2) b = int(percent1 * b1 +percent2 * b2) img_new.putpixel((x,y),(r,g,b)) img_new.save(direction) #img_new.show() finally: return status #切记在接受返回信息时先判断状态码是否异常,如果正确再执行相应操作if __name__=='__main__': img1_address = "B:\Picture\YourName\1.jpg" img2_address = "B:\Picture\YourName\2.jpg" direction = "D:/Python/PyQt/课程设计/merges/merge9.png" status = merge2(img1_address, img2_address, direction, 0.30) print(status)当然,我发现Image库中有Image.blend(image1, image2, alpha)这个混合图片的函数,还没看源码,不知道他是用什么方法实现的。
原先的两张照片:
合成后的照片:
左图是方法一,右图是方法二
优劣:
方法一不易造成曝光过度,因为实际的像素点并没改动,只是间隔变大了,但这样可能会造成轮廓不清晰
方法二在比例适当时效果是优于方式一的,但比例不合适就会看起来像曝光过度一样,示例中方法二用的比例是0.3:0.7,又是比例不当效果会很糟糕,孰优孰劣请按效果好坏使用。
以上就是python图片合成的示例的详细内容,更多关于python图片合成的资料请关注其它相关文章!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
以OPPO手机为例,把图片合成一张的方法是: 合成图片,或合成相片、合成照片,近似报纸、杂志自称的设计图片,制作容易,用PhotoShop等编辑、剪与贴而已,
图片合成器的使用步骤是(以制作双重曝光效果为例): 1、下载打开图片合成器app,进入首页。 2、这里选择“经典合成”功能为例,点击进入。 3、选择两张图
1.多张图片合成一张比如:图片合成,可以显示在浏览器上面同时保存到文件夹下面实例如下所示:$pic_path){$kk=$k+1;if(in_array($kk
本文研究的主要是pythonPIL实现图片合成的相关内容,具体介绍如下,分享实例代码。在项目中需要将两张图片合在一起。遇到两种情况,一种就是两张非透明图片的合成
本文实例讲述了Python基于pillow判断图片完整性的方法。分享给大家供大家参考,具体如下:1、安装第三方库。pipinstallpillow2、函数示例。