时间:2021-05-22
python的scipy.stats模块是连续型随机变量的公共方法,可以产生随机数,通常是以正态分布作为scipy.stats的基本使用方法。本文介绍正态分布的两种常用函数:1、累积概率密度函数stats.norm.cdf(α,均值,方差);2、概率密度函数stats.norm.pdf(α,均值,方差)。
1、stats.norm.cdf(α,均值,方差):累积概率密度函数
使用格式
status.norm.cdf(Norm) # 相当于已知正态分布函数曲线和x值,求函数x点左侧积分
使用实例
a=st.norm.cdf(0,loc=0,scale=1)print(a)x=st.norm.cdf(1.65,loc=0,scale=1)y=st.norm.cdf(1.96,loc=0,scale=1)z=st.norm.cdf(2.58,loc=0,scale=1)print(x,y,z)2、stats.norm.pdf(α,均值,方差):概率密度函数
使用格式
status.norm.pdf(Norm) # 相当于已知正态分布函数曲线和x值,求y值
使用实例
x=st.norm.pdf(0,loc=0,scale=1)y=st.norm.pdf(np.arange(3),loc=0,scale=1)print(x)print(y)内容扩展:
scipy主要的模块
到此这篇关于python的scipy.stats模块中正态分布常用函数总结的文章就介绍到这了,更多相关scipy.stats模块中正态分布常用函数内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
背景总结统计工作中几个常用用法在python统计函数库scipy.stats的使用范例。正态分布以正态分布的常见需求为例了解scipy.stats的基本使用方法
python的numpy能生成一定概率分布的随机数,但如果需要更具体的概率密度,累积概率,就要使用scipy.stats。scipy.stats用于统计分析,统
importnumpyasnpimportmatplotlib.pyplotaspltimportmath#Python实现正态分布#绘制正态分布概率密度函数u
计算概率分布的相关参数时,一般使用scipy包,常用的函数包括以下几个:pdf:连续随机分布的概率密度函数pmf:离散随机分布的概率密度函数cdf:累计分布函数
使用Python绘制正态分布曲线,借助matplotlib绘图工具;#-*-coding:utf-8-*-"""python绘制标准正态分布曲线"""#====