时间:2021-05-22
Python是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言,其具有高可扩展性和高可移植性,具有广泛的标准库,受到开发者的追捧,广泛应用于开发运维(DevOps)、数据科学、网站开发和安全。然而,它没有因速度和空间而赢得任何称赞,主要原因是Python是一门动态类型语言,每一个简单的操作都需要大量的指令才能完成。
所以这更加需要开发者在使用Python语言开发项目时协调好程序运行的时间和空间。
分析项目消耗的时间消耗,依托于line_profiler模块,其可以计算出执行每行代码所需占用的CPU时间。
第1步:安装line_profiler模块,我是用pip安装一直失败,所以下载到本地进行离线安装,指令如下所示:
pip install .\line_profiler-3.0.2-cp37-cp37m-win_amd64.whl安装成功效果如下所示:
第2步:分析每行代码的运行时间,本案例Demo检测for循环一万次累加和while循环一万次累加的时间,并进行对比,实现代码如下所示:
from line_profiler import LineProfiler def operation1(): num=0 for i in range(10000): num += 1 def operation2(): num=0 while(num < 10000): num += 1 if __name__ == "__main__": lprofiler = LineProfiler(operation1,operation2) lprofiler.run('operation1()') lprofiler.run('operation2()') lprofiler.print_stats()运行程序,可见while循环速度稍微慢一些,效果如下所示:
2、分析空间耗时
memory_profiler模块可实现对Python项目中每一个代码的内存消耗进行分析和监控。
第1步:安装memory_profiler库文件,指令如下所示:
pip install memory_profiler安装成功效果如下所示:
第2步:分析每行代码的空间消耗,本案例Demo检测for循环一万次累加和while循环一万次累加的消耗空间,并进行对比,实现代码如下所示:
from memory_profiler import profile @profiledef operation1(): num=0 for i in range(10000): num += 1 @profiledef operation2(): num=0 while(num < 10000): num += 1 if __name__ == "__main__": operation1() operation2()由于是简单运算消耗的内存是微乎其微的,效果如下所示:
本篇博文仅介绍以上两种模块,其实有更多有意思的模块可以实现对程序的运行时间和空间消耗的监测,感兴趣的朋友可以多多尝试。
到此这篇关于利用4行Python代码监测每一行程序的运行时间和空间消耗的文章就介绍到这了,更多相关python 监测程序运行时间空间消耗内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
使用@Async实现异步调用什么是”异步调用”与”同步调用”“同步调用”就是程序按照一定的顺序依次执行,,每一行程序代码必须等上一行代码执行完毕才能执行;”异步
本文实例讲述了Python基于time模块求程序运行时间的方法。分享给大家供大家参考,具体如下:要记录程序的运行时间可以利用Unix系统中,1970.1.1到现
python记录程序运行时间的三种方法这里提供了python记录程序运行时间的三种方法,并附有实现代码,最后进行比较,大家参考下:方法1importdateti
脚本语言的第一行的目的就是指出,你想要你的这个文件中的代码用什么可执行程序去运行它。写法:#!/usr/bin/python是告诉操作系统执行这个脚本的时候,调
Python运行时环境。通过使用AppEngine的Python运行时环境,您可以使用Python编程语言实现应用程序,以及在优化的Python解释器上运行应用