时间:2021-05-22
2017年底,Tensorflow 推出Lite版本,可实现移动端的快速运行,其中,一个很关键的问题,如何把现有分类模型(.pb) 转换为(.lite)模型呢?
其实,步骤如下
1- 进入 Tensorflow 源码文件夹(以便bazel可以无需配置找打相应路径)
2- 转换可执行文件
bazel run --config=opt \ //tensorflow/contrib/lite/toco:toco -- \ --input_file=/tmp/mobilenet_v1_1.0_224_frozen.pb \ # 待转换模型路径 --output_file=/tmp/tflite_model2.tflite \ # 目标模型路径 --input_format=TENSORFLOW_GRAPHDEF \ --output_format=TFLITE \ --input_shape=1,224,224,3 \ # 输入图像宽高 --input_array=input \ # 输入节点名称<参考1> --output_array=MobilenetV1/Predictions/Reshape_1 \ # 输出节点名称<参考1> --inference_type=FLOAT \ # 图像数据类型 --input_data_type=FLOAT参考1:如果输入输出节点不知道:进入python,import tf ,并通过如下命令( tf.GraphDef() )查找:
>>> import tensorflow as tf>>> gf = tf.GraphDef()>>> gf.ParseFromString(open('/your/path/to/graphname.pb','rb').read())>>> for n in gf.node:>>> print ( n.name +' ===> '+n.op )参转换后,在android手机上运行,在不考虑精度的前提下,不同实现方式得到的结果如下:
以上这篇Tensorflow 模型转换 .pb convert to .lite实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
由于项目需要,需要将TensorFlow保存的模型从ckpt文件转换为pb文件。importosfromtensorflow.pythonimportpywra
1.tensorflow模型文件打包成PB文件importtensorflowastffromtensorflow.python.toolsimportfree
一,直接保存pb1,首先我们当然可以直接在tensorflow训练中直接保存为pb为格式,保存pb的好处就是使用场景是实现创建模型与使用模型的解耦,使得创建模型
Keras的.h5模型转成tensorflow的.pb格式模型,方便后期的前端部署。直接上代码fromkeras.modelsimportModelfromke
第一步把tensorflow保存的.ckpt模型转为pb模型,并记下模型的输入输出名字.第二步去ncnn的github上把仓库clone下来,按照上面的要求装好