时间:2021-05-22
Celery (芹菜)是基于Python开发的分布式任务队列。它支持使用任务队列的方式在分布的机器/进程/线程上执行任务调度。
架构设计
Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成。
1.消息中间件
Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ, Redis, MongoDB (experimental), Amazon SQS (experimental),CouchDB (experimental), SQLAlchemy (experimental),Django ORM (experimental), IronMQ
2.任务执行单元
Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。
3.任务结果存储
Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, Redis,memcached, MongoDB,SQLAlchemy, Django ORM,Apache Cassandra, IronCache
另外, Celery还支持不同的并发和序列化的手段
1.并发
Prefork, Eventlet, gevent, threads/single threaded
2.序列化
pickle, json, yaml, msgpack. zlib, bzip2 compression, Cryptographic message signing 等等
安装和运行
Celery的安装过程略为复杂,下面的安装过程是基于我的AWS EC2的Linux版本的安装过程,不同的系统安装过程可能会有差异。大家可以参考官方文档。
首先我选择RabbitMQ作为消息中间件,所以要先安装RabbitMQ。作为安装准备,先更新YUM。
RabbitMQ是基于erlang的,所以先安装erlang
# Add and enable relevant application repositories:
# Note: We are also enabling third party remi package repositories.
wget http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
wget http://rpms.famillecollet.com/enterprise/remi-release-6.rpm
sudo rpm -Uvh remi-release-6*.rpm epel-release-6*.rpm
# Finally, download and install Erlang:
yum install -y erlang
然后安装RabbitMQ
启动RabbitMQ服务
在当前目录运行一个worker,用来执行这个加法的task
其中-A参数表示的是Celery App的名字。注意这里我使用的是SQLAlchemy作为结果存储。对应的python包要事先安装好。
worker日志中我们会看到这样的信息
其中,我们可以看到worker缺省使用prefork来执行并发,并设置并发数为8
下面的任务执行的客户端代码:
用python执行这段客户端代码,在客户端,结果如下
Work日志显示
这里我们可以发现,每一个task有一个唯一的ID,task异步执行在worker上。
这里要注意的是,如果你运行官方文档中的例子,你是无法在客户端得到结果的,这也是我为什么要使用SQLAlchemy来存储任务执行结果的原因。官方的例子使用AMPQ,有可能Worker在打印日志的时候取出了task的运行结果显示在worker日志中,然而AMPQ作为一个消息队列,当消息被取走后,队列中就没有了,于是客户端总是无法得到任务的执行结果。不知道为什么官方文档对这样的错误视而不见。
如果大家想要对Celery做更进一步的了解,请参考官方文档
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
缘起因为客户要求在应用上部署mssqlserver2008,而我们习惯了开发Linux下的服务器程序,所以就有了在linux下用python连接mssqlser
Apache上部署Django目前,Apache和mod_python是在生产服务器上部署Django的最健壮搭配。mod_python是一个在Apache中嵌
背景有一台腾讯的Linux云主机,在服务器上部署了一个docker(称为ServiceDocker,名称为sign,下同),ServiceDocker内部使用了
Nginx做为服务器,Mongo为数据库支持,Flask为Python语言的Web框架,利用Docker的容器特性,可以简单地部署在linux服务器上项目准备项
在上篇文章给大家介绍了在Nginx上部署ThinkPHP项目教程,今天给大家介绍nginx下thinkphp的配置,具体详解如下:##domainredirec