pytorch cuda上tensor的定义 以及减少cpu的操作详解

时间:2021-05-22

cuda上tensor的定义

a = torch.ones(1000,1000,3).cuda()

某一gpu上定义

cuda1 = torch.device('cuda:1')
b = torch.randn((1000,1000,1000),device=cuda1)

删除某一变量

del a

在cpu定义tensor然后转到gpu

torch.zeros().cuda()

直接在gpu上定义,这样就减少了cpu的损耗

torch.cuda.FloatTensor(batch_size, self.hidden_dim, self.height, self.width).fill_(0)

补充知识:pytorch cuda.FloatTensor->FloatTensor

错误类型:

RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor)

定义残差块时定义在model的外面,在使用gpu进行训练的时候,残差块的参数是torch.FloatTensor类型,

虽然使用了model.cuda(),但是只对model里面的参数在gpu部分,所以把残差块对应的操作都在model的__init__(),

重新定义,即可解决问题

以上这篇pytorch cuda上tensor的定义 以及减少cpu的操作详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章