时间:2021-05-22
finetune分为全局finetune和局部finetune。首先介绍一下局部finetune步骤:
1.固定参数
for name, child in model.named_children(): for param in child.parameters(): param.requires_grad = False后,只传入 需要反传的参数,否则会报错
filter(lambda param: param.requires_grad, model.parameters())2.调低学习率,加快衰减
finetune是在预训练模型上进行微调,学习速率不能太大。
目前不清楚:学习速率降低的幅度可以更快一些。这样以来,在使用step的策略时,stepsize可以更小一些。
直接从原始数据训练的base_lr一般为0.01,微调要比0.01小,置为0.001
要比直接训练的小一些,直接训练的stepsize为100000,finetune的stepsize: 50000
3. 固定bn或取消dropout:
batchnorm会影响训练的效果,随着每个batch,追踪样本的均值和方差。对于固定的网络,bn应该使用全局的数值
def freeze_bn(self): for layer in self.modules(): if isinstance(layer, nn.BatchNorm2d): layer.eval()训练时,model.train()会修改模式,freeze_zn()应该在这里后面
4.过滤参数
训练时,对于优化器,应该只传入需要改变的参数,否则会报错
filter(lambda p: p.requires_grad, model.parameters())以上这篇Pytorch之finetune使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
在迁移学习finetune时我们通常需要冻结前几层的参数不参与训练,在Pytorch中的实现如下:classModel(nn.Module):def__init
pytorch之ImageFoldertorchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet、COCO
AndroidListView之EfficientAdapte的使用详解在做Android手机应用开发时,ListView是一个非常常用的控件。如何更新的使用它
使用Pytorch来编写神经网络具有很多优势,比起Tensorflow,我认为Pytorch更加简单,结构更加清晰。希望通过实战几个Pytorch的例子,让大家
Android注解相关文章:AndroidAOP注解Annotation详解(一)AndroidAOP之注解处理解释器详解(二)AndroidAOP注解详解及简