时间:2021-05-22
heapq 模块提供了堆算法。heapq是一种子节点和父节点排序的树形数据结构。这个模块提供heap[k] <= heap[2*k+1] and heap[k] <= heap[2*k+2]。为了比较不存在的元素被人为是无限大的。heap最小的元素总是[0]。
打印 heapq 类型
import math import randomfrom cStringIO import StringIOdef show_tree(tree, total_width=36, fill=' '): output = StringIO() last_row = -1 for i, n in enumerate(tree): if i: row = int(math.floor(math.log(i+1, 2))) else: row = 0 if row != last_row: output.write('\n') columns = 2**row col_width = int(math.floor((total_width * 1.0) / columns)) output.write(str(n).center(col_width, fill)) last_row = row print output.getvalue() print '-' * total_width print returndata = random.sample(range(1,8), 7)print 'data: ', datashow_tree(data)打印结果
data: [3, 2, 6, 5, 4, 7, 1] 3 2 6 5 4 7 1 -------------------------heapq.heappush(heap, item)push一个元素到heap里, 修改上面的代码
heap = []data = random.sample(range(1,8), 7)print 'data: ', datafor i in data: print 'add %3d:' % i heapq.heappush(heap, i) show_tree(heap)打印结果
data: [6, 1, 5, 4, 3, 7, 2]add 6: 6 ------------------------------------add 1: 1 6 ------------------------------------add 5: 1 6 5 ------------------------------------add 4: 1 4 5 6------------------------------------add 3: 1 3 5 6 4------------------------------------add 7: 1 3 5 6 4 7------------------------------------add 2: 1 3 2 6 4 7 5------------------------------------根据结果可以了解,子节点的元素大于父节点元素。而兄弟节点则不会排序。
heapq.heapify(list)
将list类型转化为heap, 在线性时间内, 重新排列列表。
print 'data: ', dataheapq.heapify(data)print 'data: ', datashow_tree(data)打印结果
data: [2, 7, 4, 3, 6, 5, 1]data: [1, 3, 2, 7, 6, 5, 4] 1 3 2 7 6 5 4 ------------------------------------heapq.heappop(heap)删除并返回堆中最小的元素, 通过heapify() 和heappop()来排序。
data = random.sample(range(1, 8), 7)print 'data: ', dataheapq.heapify(data)show_tree(data)heap = []while data: i = heapq.heappop(data) print 'pop %3d:' % i show_tree(data) heap.append(i)print 'heap: ', heap打印结果
data: [4, 1, 3, 7, 5, 6, 2] 1 4 2 7 5 6 3------------------------------------pop 1: 2 4 3 7 5 6------------------------------------pop 2: 3 4 6 7 5------------------------------------pop 3: 4 5 6 7------------------------------------pop 4: 5 7 6------------------------------------pop 5: 6 7------------------------------------pop 6: 7------------------------------------pop 7:------------------------------------heap: [1, 2, 3, 4, 5, 6, 7]可以看到已排好序的heap。
heapq.heapreplace(iterable, n)
删除现有元素并将其替换为一个新值。
data = random.sample(range(1, 8), 7)print 'data: ', dataheapq.heapify(data)show_tree(data)for n in [8, 9, 10]: smallest = heapq.heapreplace(data, n) print 'replace %2d with %2d:' % (smallest, n) show_tree(data)打印结果
data: [7, 5, 4, 2, 6, 3, 1] 1 2 3 5 6 7 4------------------------------------replace 1 with 8: 2 5 3 8 6 7 4------------------------------------replace 2 with 9: 3 5 4 8 6 7 9------------------------------------replace 3 with 10: 4 5 7 8 6 10 9------------------------------------heapq.nlargest(n, iterable) 和 heapq.nsmallest(n, iterable)
返回列表中的n个最大值和最小值
data = range(1,6)l = heapq.nlargest(3, data)print l # [5, 4, 3]s = heapq.nsmallest(3, data)print s # [1, 2, 3]PS:一个计算题
构建元素个数为 K=5 的最小堆代码实例:
结果:
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
Pythonheapq详解Python有一个内置的模块,heapq标准的封装了最小堆的算法实现。下面看两个不错的应用。小顶堆(求TopK大)话说需求是这样的:定
详解PythonMD5加密Python3下MD5加密#由于MD5模块在python3中被移除#在python3中使用hashlib模块进行md5操作import
本文实例讲述了Python模块、包(Package)概念与用法。分享给大家供大家参考,具体如下:Python中”模块”的概念在开发中,我们会有很多函数,我们可以
本文实例讲述了Node.jsAPI详解之zlib模块用法。分享给大家供大家参考,具体如下:Node.jsAPI详解之zlibzlib模块提供通过Gzip和Def
本文实例讲述了Node.jsAPI详解之assert模块用法。分享给大家供大家参考,具体如下:Node.jsAPI详解之assertassert模块提供了断言测