时间:2021-05-22
Keras运行迭代一定代数以后,速度越来越慢,经检查是因为在循环迭代过程中增加了新的计算节点,导致计算节点越来越多,内存被占用完,速度变慢。
判断是否在循环迭代过程中增加了新的计算节点,可以用下面的语句:
tf.Graph.finalize()
如果增加了新的计算节点,就会报错,如果没有报错,说明没有增加计算节点。
补充知识:win10下pytorch,tensorflow,keras+tf速度对比
采用GitHub上的代码
运行类似vgg模型,在cifar10上训练,结果朋友torch与tensorflow速度相当,远远快过keras。
pytorch tensorflow keras+tensorflow version 0.4.0 1.8.0 Keras: 2.1.6 Tensorflow: 1.8.0 train time: 1min 14s 1min 9s 1min 51s evaluate time: 378 ms 9.4 s 826 ms以上这篇解决keras backend 越跑越慢问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
通过设置Keras的Tensorflow后端的全局变量达到。importosimporttensorflowastfimportkeras.backend.te
在win764位,Anaconda安装的Python3.6.1下安装的TensorFlow与Keras,Keras的backend为TensorFlow。在运行
问题描述:在利用神经网络进行分类和识别的时候,使用了keras这个封装层次比较高的框架,backend使用的是tensorflow-cpu。在交叉验证的时候,出
如下所示:keras.backend.clip(x,min_value,max_value)逐元素clip(将超出指定范围的数强制变为边界值)参数x:张量或变量
初步尝试Keras(基于Tensorflow后端)深度框架时,发现其对于GPU的使用比较神奇,默认竟然是全部占满显存,1080Ti跑个小分类问题,就一下子满了.