时间:2021-05-22
MLP分类效果一般好于线性分类器,即将特征输入MLP中再经过softmax来进行分类。
具体实现为将原先线性分类模块:
self.classifier = nn.Linear(config.hidden_size, num_labels)替换为:
self.classifier = MLP(config.hidden_size, num_labels)并且添加MLP模块:
class MLP(nn.Module): def __init__(self, input_size, common_size): super(MLP, self).__init__() self.linear = nn.Sequential( nn.Linear(input_size, input_size // 2), nn.ReLU(inplace=True), nn.Linear(input_size // 2, input_size // 4), nn.ReLU(inplace=True), nn.Linear(input_size // 4, common_size) ) def forward(self, x): out = self.linear(x) return out看一下模块结构:
mlp = MLP(1000,3)print(mlp)以上这篇关于Pytorch的MLP模块实现方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
简介这是深度学习课程的第一个实验,主要目的就是熟悉Pytorch框架。MLP是多层感知器,我这次实现的是四层感知器,代码和思路参考了网上的很多文章。个人认为,感
前言PyTorch作为一款深度学习框架,已经帮助我们实现了很多很多的功能了,包括数据的读取和转换了,那么这一章节就介绍一下PyTorch内置的数据读取模块吧模块
前言本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。Part3:使用PyTorch构建
一、必要的python模块PyTorch的Vision模块提供了图像变换的很多函数.torchvision/transforms/functional.pyfr
Facebook近日开源了将PyTorch用于3D深度学习的函数库PyTorch3D,这是一个高度模块化且经过优化的库,具备独有的功能,旨在通过PyTorc