时间:2021-05-22
一、数据集介绍
点击打开链接17_Category_Flower 是一个不同种类鲜花的图像数据,包含 17 不同种类的鲜花,每类 80 张该类鲜花的图片,鲜花种类是英国地区常见鲜花。下载数据后解压文件,然后将不同的花剪切到对应的文件夹,如下图所示:
每个文件夹下面有80个图片文件。
二、使用的工具
首先是在tensorflow框架下,然后介绍一下用到的两个库,一个是os,一个是PIL。PIL(Python Imaging Library)是 Python 中最常用的图像处理库,而Image类又是 PIL库中一个非常重要的类,通过这个类来创建实例可以有直接载入图像文件,读取处理过的图像和通过抓取的方法得到的图像这三种方法。
三、代码实现
我们是通过TFRecords来创建数据集的,TFRecords其实是一种二进制文件,虽然它不如其他格式好理解,但是它能更好的利用内存,更方便复制和移动,并且不需要单独的标签文件(label)。
1、制作TFRecords文件
import osimport tensorflow as tffrom PIL import Image # 注意Image,后面会用到import matplotlib.pyplot as pltimport numpy as np cwd = 'D:\PyCharm Community Edition 2017.2.3\Work\google_net\jpg\\'classes = {'daffodil', 'snowdrop', 'lilyvalley', 'bluebell', 'crocus', 'iris', 'tigerlily', 'tulip', 'fritiuary', 'sunflower', 'daisy', 'coltsfoot', 'dandelion', 'cowslip', 'buttercup', 'windflower', 'pansy'} # 花为 设定 17 类writer = tf.python_io.TFRecordWriter("flower_train.tfrecords") # 要生成的文件 for index, name in enumerate(classes): class_path = cwd + name + '\\' for img_name in os.listdir(class_path): img_path = class_path + img_name # 每一个图片的地址 img = Image.open(img_path) img = img.resize((224, 224)) img_raw = img.tobytes() # 将图片转化为二进制格式 example = tf.train.Example(features=tf.train.Features(feature={ "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])), 'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])) })) # example对象对label和image数据进行封装 writer.write(example.SerializeToString()) # 序列化为字符串writer.close()首先将文件移动到对应的路径:
D:\PyCharm Community Edition 2017.2.3\Work\google_net\jpg
然后对每个文件下的图片进行读写和相应的大小惊醒改变,具体过程是使用tf.train.Example来定义我们要填入的数据格式,其中label即为标签,也就是最外层的文件夹名字,img_raw为易经理二进制化的图片。然后使用tf.python_io.TFRecordWriter来写入。基本的,一个Example中包含Features,Features里包含Feature(这里没s)的字典。最后,Feature里包含有一个 FloatList, 或者ByteList,或者Int64List。就这样,我们把相关的信息都存到了一个文件中,所以前面才说不用单独的label文件。而且读取也很方便。
执行完以上代码就会出现如下图所示的TF文件
2、读取TFRECORD文件
制作完文件后,将该文件读入到数据流中,具体代码如下:
def read_and_decode(filename): # 读入dog_train.tfrecords filename_queue = tf.train.string_input_producer([filename]) # 生成一个queue队列 reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) # 返回文件名和文件 features = tf.parse_single_example(serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'img_raw': tf.FixedLenFeature([], tf.string), }) # 将image数据和label取出来 img = tf.decode_raw(features['img_raw'], tf.uint8) img = tf.reshape(img, [224, 224, 3]) # reshape为128*128的3通道图片 img = tf.cast(img, tf.float32) * (1. / 255) - 0.5 # 在流中抛出img张量 label = tf.cast(features['label'], tf.int32) # 在流中抛出label张量 return img, label注意,feature的属性“label”和“img_raw”名称要和制作时统一 ,返回的img数据和label数据一一对应。
3、显示tfrecord格式的图片
为了知道TF 文件的具体内容,或者是怕图片对应的label出错,可以将数据流以图片的形式读出来并保存以便查看,具体的代码如下:
filename_queue = tf.train.string_input_producer(["flower_train.tfrecords"]) # 读入流中reader = tf.TFRecordReader()_, serialized_example = reader.read(filename_queue) # 返回文件名和文件features = tf.parse_single_example(serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'img_raw': tf.FixedLenFeature([], tf.string), }) # 取出包含image和label的feature对象image = tf.decode_raw(features['img_raw'], tf.uint8)image = tf.reshape(image, [224, 224, 3])label = tf.cast(features['label'], tf.int32)label = tf.one_hot(label, 17, 1, 0)with tf.Session() as sess: # 开始一个会话 init_op = tf.initialize_all_variables() sess.run(init_op) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) for i in range(100): example, l = sess.run([image, label]) # 在会话中取出image和label img = Image.fromarray(example, 'RGB') # 这里Image是之前提到的 img.save(cwd + str(i) + '_''Label_' + str(l) + '.jpg') # 存下图片 print(example, l) coord.request_stop() coord.join(threads)执行以上代码后,当前项目对应的文件夹下会生成100张图片,还有对应的label,如下图所示:
在这里我们可以看到,前80个图片文件的label是1,后20个图片的label是2。 由此可见,我们一开始制作tfrecord文件时,图片分类正确。
完整代码如下:
import osimport tensorflow as tffrom PIL import Image # 注意Image,后面会用到import matplotlib.pyplot as pltimport numpy as np cwd = 'D:\PyCharm Community Edition 2017.2.3\Work\google_net\jpg\\'classes = {'daffodil', 'snowdrop', 'lilyvalley', 'bluebell', 'crocus', 'iris', 'tigerlily', 'tulip', 'fritiuary', 'sunflower', 'daisy', 'coltsfoot', 'dandelion', 'cowslip', 'buttercup', 'windflower', 'pansy'} # 花为 设定 17 类writer = tf.python_io.TFRecordWriter("flower_train.tfrecords") # 要生成的文件 for index, name in enumerate(classes): class_path = cwd + name + '\\' for img_name in os.listdir(class_path): img_path = class_path + img_name # 每一个图片的地址 img = Image.open(img_path) img = img.resize((224, 224)) img_raw = img.tobytes() # 将图片转化为二进制格式 example = tf.train.Example(features=tf.train.Features(feature={ "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])), 'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])) })) # example对象对label和image数据进行封装 writer.write(example.SerializeToString()) # 序列化为字符串writer.close() def read_and_decode(filename): # 读入dog_train.tfrecords filename_queue = tf.train.string_input_producer([filename]) # 生成一个queue队列 reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) # 返回文件名和文件 features = tf.parse_single_example(serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'img_raw': tf.FixedLenFeature([], tf.string), }) # 将image数据和label取出来 img = tf.decode_raw(features['img_raw'], tf.uint8) img = tf.reshape(img, [224, 224, 3]) # reshape为128*128的3通道图片 img = tf.cast(img, tf.float32) * (1. / 255) - 0.5 # 在流中抛出img张量 label = tf.cast(features['label'], tf.int32) # 在流中抛出label张量 return img, label filename_queue = tf.train.string_input_producer(["flower_train.tfrecords"]) # 读入流中reader = tf.TFRecordReader()_, serialized_example = reader.read(filename_queue) # 返回文件名和文件features = tf.parse_single_example(serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'img_raw': tf.FixedLenFeature([], tf.string), }) # 取出包含image和label的feature对象image = tf.decode_raw(features['img_raw'], tf.uint8)image = tf.reshape(image, [224, 224, 3])label = tf.cast(features['label'], tf.int32)label = tf.one_hot(label, 17, 1, 0)with tf.Session() as sess: # 开始一个会话 init_op = tf.initialize_all_variables() sess.run(init_op) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) for i in range(100): example, l = sess.run([image, label]) # 在会话中取出image和label img = Image.fromarray(example, 'RGB') # 这里Image是之前提到的 img.save(cwd + str(i) + '_''Label_' + str(l) + '.jpg') # 存下图片 print(example, l) coord.request_stop() coord.join(threads)本人也是刚刚学习深度学习,能力有限,不足之处请见谅,欢迎大牛一起讨论,共同进步!
以上这篇对python制作自己的数据集实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例为大家分享了Python实现k-means算法的具体代码,供大家参考,具体内容如下这也是周志华《机器学习》的习题9.4。数据集是西瓜数据集4.0,如下编
第在深度学习中,学会制作自己的数据集然后进行模型训练是一个很重要的步骤,这里教大家下载安装使用两种制作自己的数据集的标注工具labelimg和labelme。前
python系统调用的实例详解本文将通过两种方法对python系统调用进行讲解,包括python使用CreateProcess函数运行其他程序和ctypes模块
本文实例为大家分享了python实现批量格式转换的具体代码,供大家参考,具体内容如下深度学习过程中总是绕不开数据集的制作,有时候实际图片格式或大小可能与需要关心
python自定义异常实例详解本文通过两种方法对Python自定义异常进行讲解,第一种:创建一个新的exception类来拥有自己的异常,第二种:raise唯一