时间:2021-05-22
一维插值
插值不同于拟合。插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本点穿过。常见插值方法有拉格朗日插值法、分段插值法、样条插值法。
拉格朗日插值多项式:当节点数n较大时,拉格朗日插值多项式的次数较高,可能出现不一致的收敛情况,而且计算复杂。随着样点增加,高次插值会带来误差的震动现象称为龙格现象。
分段插值:虽然收敛,但光滑性较差。
样条插值:样条插值是使用一种名为样条的特殊分段多项式进行插值的形式。由于样条插值可以使用低阶多项式样条实现较小的插值误差,这样就避免了使用高阶多项式所出现的龙格现象,所以样条插值得到了流行。
在CODE上查看代码片派生到我的代码片
结果:
二维插值
方法与一维数据插值类似,为二维样条插值。
在CODE上查看代码片派生到我的代码片
# -*- coding: utf-8 -*- """ 演示二维插值。 """ import numpy as np from scipy import interpolate import pylab as pl import matplotlib as mpl def func(x, y): return (x+y)*np.exp(-5.0*(x**2 + y**2)) # X-Y轴分为15*15的网格 y,x= np.mgrid[-1:1:15j, -1:1:15j] fvals = func(x,y) # 计算每个网格点上的函数值 15*15的值 print len(fvals[0]) #三次样条二维插值 newfunc = interpolate.interp2d(x, y, fvals, kind='cubic') # 计算100*100的网格上的插值 xnew = np.linspace(-1,1,100)#x ynew = np.linspace(-1,1,100)#y fnew = newfunc(xnew, ynew)#仅仅是y值 100*100的值 # 绘图 # 为了更明显地比较插值前后的区别,使用关键字参数interpolation='nearest' # 关闭imshow()内置的插值运算。 pl.subplot(121) im1=pl.imshow(fvals, extent=[-1,1,-1,1], cmap=mpl.cm.hot, interpolation='nearest', origin="lower")#pl.cm.jet #extent=[-1,1,-1,1]为x,y范围 favals为 pl.colorbar(im1) pl.subplot(122) im2=pl.imshow(fnew, extent=[-1,1,-1,1], cmap=mpl.cm.hot, interpolation='nearest', origin="lower") pl.colorbar(im2) pl.show()左图为原始数据,右图为二维插值结果图。
二维插值的三维展示方法
在CODE上查看代码片派生到我的代码片
# -*- coding: utf-8 -*- """ 演示二维插值。 """ # -*- coding: utf-8 -*- import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib as mpl from scipy import interpolate import matplotlib.cm as cm import matplotlib.pyplot as plt def func(x, y): return (x+y)*np.exp(-5.0*(x**2 + y**2)) # X-Y轴分为20*20的网格 x = np.linspace(-1, 1, 20) y = np.linspace(-1,1,20) x, y = np.meshgrid(x, y)#20*20的网格数据 fvals = func(x,y) # 计算每个网格点上的函数值 15*15的值 fig = plt.figure(figsize=(9, 6)) #Draw sub-graph1 ax=plt.subplot(1, 2, 1,projection = '3d') surf = ax.plot_surface(x, y, fvals, rstride=2, cstride=2, cmap=cm.coolwarm,linewidth=0.5, antialiased=True) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('f(x, y)') plt.colorbar(surf, shrink=0.5, aspect=5)#标注 #二维插值 newfunc = interpolate.interp2d(x, y, fvals, kind='cubic')#newfunc为一个函数 # 计算100*100的网格上的插值 xnew = np.linspace(-1,1,100)#x ynew = np.linspace(-1,1,100)#y fnew = newfunc(xnew, ynew)#仅仅是y值 100*100的值 np.shape(fnew) is 100*100 xnew, ynew = np.meshgrid(xnew, ynew) ax2=plt.subplot(1, 2, 2,projection = '3d') surf2 = ax2.plot_surface(xnew, ynew, fnew, rstride=2, cstride=2, cmap=cm.coolwarm,linewidth=0.5, antialiased=True) ax2.set_xlabel('xnew') ax2.set_ylabel('ynew') ax2.set_zlabel('fnew(x, y)') plt.colorbar(surf2, shrink=0.5, aspect=5)#标注 plt.show()左图的二维数据集的函数值由于样本较少,会显得粗糙。而右图对二维样本数据进行三次样条插值,拟合得到更多数据点的样本值,绘图后图像明显光滑多了。
补充知识:python中对Dataframe二维查表插值的实现方法
今天在计算风力发电机捕捉风能功率的时候,需要对叶片扫略面积内的风能做个功率效率折减,即Cp系数,Cp的定义如下,即实际利用的风能与输入风能的比例
输入风能是空气密度与风速的函数,可以直接计算:
那么实际得到的能力是Pin与Cp的乘积。
Cp通常是一个二维表,横坐标是TSR(叶尖速与风速的比值),纵坐标是PITCH Angle(桨叶角)。风机的运行数据中是包含风速 ,转速以及桨叶角信息的,并且通过直接读入到DataFrame,那么就需要根据TSR与PA对Cp查表并且插值得到Cp。主要用到scipy.interpolate.interp2d创建插值函数并查表,另外Dataframe不能直接用插值函数,这里做了个for循环分行插值查表。
from scipy.interpolate import interp2ddf_rotormap = pd.read_csv('filepath',header = None) #读取Cp表x = np.array(df_rotormap.iloc[:,0].dropna()) #Cp表的X坐标是TSRy = np.array(df_rotormap.iloc[:,1]) #Cp表的Y坐标是pitch anglez = np.array(df_rotormap.iloc[:,2:]) #Cp表的具体值,y行x列rho = 1.225 #kg/m3s = (141/2)**2*np.pi #m2df_cal['TSR'] = df_cal['发电机转速(PDM1)']/148*141*np.pi/60/df_cal['风速']func_new = interp2d(x,y,z,kind = 'linear') #定义二维表插值函数,选择线性插值cp_list = []for i in range(df_cal.shape[0]): cp = float(func_new(df_cal['TSR'][i],df_cal['1号桨叶角度'][i])) #输入X,Y坐标, 输出插值计算的Cp cp_list.append(cp)df_cal['cp'] = cp_list #把Cp放回到Dataframe中去df_cal['air_power'] = 0.5*rho*s*df_cal['风速']**3*df_cal['cp']以上这篇python 一维二维插值实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例为大家分享了二维插值的三维显示具体代码,供大家参考,具体内容如下#-*-coding:utf-8-*-"""演示二维插值。"""#-*-coding:u
本文实例讲述了Python使用min、max函数查找二维数据矩阵中最小、最大值的方法。分享给大家供大家参考,具体如下:简单使用min、max函数来得到二维数据矩
本文实例讲述了PHP生成二维码与识别二维码的方法。分享给大家供大家参考,具体如下:二维码的分类线性堆叠式二维码矩阵式二维码二维码的优缺点优点信息容量大编码范围广
本文实例讲述了Python实现将文本生成二维码的方法。分享给大家供大家参考,具体如下:#coding:utf-8'''Python生成二维码v1.0主要将文本生
php去掉二维数组的重复值的方法总结,具体代码如下:方法一://二维数组去掉重复值functionarray_unique_fb($array2D){forea