彻底理解Python中的yield关键字

时间:2021-05-22

阅读别人的python源码时碰到了这个yield这个关键字,各种搜索终于搞懂了,在此做一下总结:

  • 通常的for...in...循环中,in后面是一个数组,这个数组就是一个可迭代对象,类似的还有链表,字符串,文件。它可以是mylist = [1, 2, 3],也可以是mylist = [x*x for x in range(3)]。它的缺陷是所有数据都在内存中,如果有海量数据的话将会非常耗内存。
  • 生成器是可以迭代的,但只可以读取它一次。因为用的时候才生成。比如 mygenerator = (x*x for x in range(3)),注意这里用到了(),它就不是数组,而上面的例子是[]。
  • 我理解的生成器(generator)能够迭代的关键是它有一个next()方法,工作原理就是通过重复调用next()方法,直到捕获一个异常。可以用上面的mygenerator测试。
  • 带有 yield 的函数不再是一个普通函数,而是一个生成器generator,可用于迭代,工作原理同上。
  • yield 是一个类似 return 的关键字,迭代一次遇到yield时就返回yield后面(右边)的值。重点是:下一次迭代时,从上一次迭代遇到的yield后面的代码(下一行)开始执行。
  • 简要理解:yield就是 return 返回一个值,并且记住这个返回的位置,下次迭代就从这个位置后(下一行)开始。
  • 带有yield的函数不仅仅只用于for循环中,而且可用于某个函数的参数,只要这个函数的参数允许迭代参数。比如array.extend函数,它的原型是array.extend(iterable)。
  • send(msg)与next()的区别在于send可以传递参数给yield表达式,这时传递的参数会作为yield表达式的值,而yield的参数是返回给调用者的值。——换句话说,就是send可以强行修改上一个yield表达式值。比如函数中有一个yield赋值,a = yield 5,第一次迭代到这里会返回5,a还没有赋值。第二次迭代时,使用.send(10),那么,就是强行修改yield 5表达式的值为10,本来是5的,那么a=10
  • send(msg)与next()都有返回值,它们的返回值是当前迭代遇到yield时,yield后面表达式的值,其实就是当前迭代中yield后面的参数。
  • 第一次调用时必须先next()或send(None),否则会报错,send后之所以为None是因为这时候没有上一个yield(根据第8条)。可以认为,next()等同于send(None)。

代码示例1:

#encoding:UTF-8 def yield_test(n): for i in range(n): yield call(i) print("i=",i) #做一些其它的事情 print("do something.") print("end.") def call(i): return i*2 #使用for循环 for i in yield_test(5): print(i,",")

结果是:

>>>
0 ,
i= 0
2 ,
i= 1
4 ,
i= 2
6 ,
i= 3
8 ,
i= 4
do something.
end.
>>>

理解的关键在于:下次迭代时,代码从yield的下一跳语句开始执行。

代码示例2:

def node._get_child_candidates(self, distance, min_dist, max_dist): if self._leftchild and distance - max_dist < self._median: yield self._leftchild if self._rightchild and distance + max_dist >= self._median: yield self._rightchild

与前面不同的是,这个函数中没有for循环,但它依然可以用于迭代。

node._get_child_candidates函数中有yield,所以它变成了一个迭代器,可以用于迭代。

执行第一次迭代时(其实就是调用next()方法),如果有左节点并且距离满足要求,会执行第一个yield,这时会返回self._leftchild并完成第一个迭代。

执行第二次迭代时,从第一个yield后面开始,如果有右节点并且距离满足要求,会执行第二个yield,这时会返回self._rightchild并完成第一个迭代。

执行第三次迭代时,第二个yield后再无代码,捕获异常,退出迭代。

调用过程:

result, candidates = list(), [self]while candidates: node = candidates.pop() distance = node._get_dist(obj) if distance <= max_dist and distance >= min_dist: result.extend(node._values) candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))return result

上面的node._get_child_candidates(self, distance, min_dist, max_dist)是放在extend()函数中作为参数的,为什么可以这么用,就因为extend函数的参数不仅仅支持array,只要它是一个迭代器就可以。它的原型是array.extend(iterable)。

代码示例3:

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。如果你想了解更多相关内容请查看下面相关链接

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章