时间:2021-05-22
实现思路
是用深度遍历,对图片进行二值化处理,先找到一个黑色像素,然后对这个像素的周围8个像素进行判断,如果没有访问过,就保存起来,然后最后这个数组的最小x和最大x就是x轴上的切割位置。这种分割的方法还是只能适用于没有粘连的验证码,比垂直分割的好处是,可以处理位置比较奇怪的验证码。
示例代码
def cfs(img): """传入二值化后的图片进行连通域分割""" pixdata = img.load() w,h = img.size visited = set() q = queue.Queue() offset = [(-1,-1),(0,-1),(1,-1),(-1,0),(1,0),(-1,1),(0,1),(1,1)] cuts = [] for x in range(w): for y in range(h): x_axis = [] #y_axis = [] if pixdata[x,y] == 0 and (x,y) not in visited: q.put((x,y)) visited.add((x,y)) while not q.empty(): x_p,y_p = q.get() for x_offset,y_offset in offset: x_c,y_c = x_p+x_offset,y_p+y_offset if (x_c,y_c) in visited: continue visited.add((x_c,y_c)) try: if pixdata[x_c,y_c] == 0: q.put((x_c,y_c)) x_axis.append(x_c) #y_axis.append(y_c) except: pass if x_axis: min_x,max_x = min(x_axis),max(x_axis) if max_x - min_x > 3: # 宽度小于3的认为是噪点,根据需要修改 cuts.append((min_x,max_x + 1)) return cuts def saveSmall(img, outDir, cuts): w, h = img.size pixdata = img.load() for i, item in enumerate(cuts): box = (item[0], 0, item[1], h) img.crop(box).save(outDir + str(i) + ".png")img = Image.open('out/51.png') saveSmall(img, 'cfs/', cfs(img))总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。
参考这篇文章: https://www.jb51.net/article/141434.htm
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
前言本文介绍的imagecode方法是一个生成图形验证码的请求,checkcode方法实现了对这个图形验证码的验证。从验证码的生成到验证的过程中,验证码是通过S
大致介绍 在python爬虫爬取某些网站的验证码的时候可能会遇到验证码识别的问题,现在的验证码大多分为四类: 1、计算验证码 2、滑块验证码 3
本文实例讲述了Python实现简单生成验证码功能。分享给大家供大家参考,具体如下:验证码一般用来验证登陆、交易等行为,减少对端为机器操作的概率,python中可
最近终于找到一个好的方法,使用Python的OpenCV模块识别滑动验证码的缺口,可以将滑动验证码中的缺口识别出来了。测试使用如下两张图片:target.jpg
本文以实例演示5种验证码,并介绍生成验证码的函数。PHP生成验证码的原理:通过GD库,生成一张带验证码的图片,并将验证码保存在Session中。1、HTML5中