时间:2021-05-22
使用 ProcessPoolExecutor
斐波那契数列
当 n 大于 30 时抛出异常
def fib(n): if n > 30: raise Exception('can not > 30, now %s' % n) if n <= 2: return 1 return fib(n-1) + fib(n-2)准备数组
nums = [random.randint(0, 33) for _ in range(0, 10)]'''[13, 17, 0, 22, 19, 33, 7, 12, 8, 16]'''方案一:submit
submit 输出结果按照子进程执行结束的先后顺序,不可控
with ProcessPoolExecutor(max_workers=3) as executor: futures = {executor.submit(fib, n):n for n in nums} for f in as_completed(futures): try: print('fib(%s) result is %s.' % (futures[f], f.result())) except Exception as e: print(e)'''fib(13) result is 233.fib(17) result is 1597.fib(0) result is 1.fib(22) result is 17711.fib(19) result is 4181.can not > 30, now 33fib(7) result is 13.fib(12) result is 144.fib(8) result is 21.fib(16) result is 987.'''等价写法:
with ProcessPoolExecutor(max_workers=3) as executor: futures = {} for n in nums: job = executor.submit(fib, n) futures[job] = n for job in as_completed(futures): try: re = job.result() n = futures[job] print('fib(%s) result is %s.' % (n, re)) except Exception as e: print(e)'''fib(13) result is 233.fib(17) result is 1597.fib(0) result is 1.fib(22) result is 17711.can not > 30, now 33fib(7) result is 13.fib(19) result is 4181.fib(8) result is 21.fib(12) result is 144.fib(16) result is 987.'''方案二:map
map 输出结果按照输入数组的顺序
缺点:某一子进程异常会导致整体中断
with ProcessPoolExecutor(max_workers=3) as executor: try: results = executor.map(fib, nums) for num, result in zip(nums, results): print('fib(%s) result is %s.' % (num, result)) except Exception as e: print(e)'''fib(13) result is 233.fib(17) result is 1597.fib(0) result is 1.fib(22) result is 17711.fib(19) result is 4181.can not > 30, now 33'''以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
我们都知道并发(不是并行)编程目前有四种方式,多进程,多线程,异步,和协程。多进程编程在python中有类似C的os.fork,当然还有更高层封装的multip
1、python多进程编程背景python中的多进程最大的好处就是充分利用多核cpu的资源,不像python中的多线程,受制于GIL的限制,从而只能进行cpu分
多任务(并行和并发)在讲协程之前,先谈谈多进程、多线程、并行和并发。对于单核处理器,多进程实现多任务的原理是让操作系统给一个任务每次分配一定的CPU时间片,然后
多线程适合于多io操作多进程适合于耗cpu(计算)的操作#多进程编程#耗cpu的操作,用多进程编程,对于io操作来说,使用多线程编程importtimefrom
python的multiprocessing包是标准库提供的多进程并行计算包,提供了和threading(多线程)相似的API函数,但是相比于threading