时间:2021-05-22
数据规整化:合并、清理、过滤
pandas和python标准库提供了一整套高级、灵活的、高效的核心函数和算法将数据规整化为你想要的形式!
本篇博客主要介绍:
合并数据集:.merge()、.concat()等方法,类似于SQL或其他关系型数据库的连接操作。
合并数据集
1) merge 函数参数
参数 说明 left 参与合并的左侧DataFrame right 参与合并的右侧DataFrame how 连接方式:‘inner'(默认);还有,‘outer'、‘left'、‘right' on 用于连接的列名,必须同时存在于左右两个DataFrame对象中,如果位指定,则以left和right列名的交集作为连接键 left_on 左侧DataFarme中用作连接键的列 right_on 右侧DataFarme中用作连接键的列 left_index 将左侧的行索引用作其连接键 right_index 将右侧的行索引用作其连接键 sort 根据连接键对合并后的数据进行排序,默认为True。有时在处理大数据集时,禁用该选项可获得更好的性能 suffixes 字符串值元组,用于追加到重叠列名的末尾,默认为(‘_x',‘_y').例如,左右两个DataFrame对象都有‘data',则结果中就会出现‘data_x',‘data_y' copy 设置为False,可以在某些特殊情况下避免将数据复制到结果数据结构中。默认总是赋值
1、多对一的合并(一个表的连接键列有重复值,另一个表中的连接键没有重复值)
import pandas as pdimport numpy as npdf1 = pd.DataFrame({'key':['b','b','a','c','a','a','b'],'data1': range(7)})df1data1 key 0 0 b 1 1 b 2 2 a 3 3 c 4 4 a 5 5 a 6 6 b
df2 = pd.DataFrame({'key':['a','b','d'],'data2':range(3)})df2data2 key 0 0 a 1 1 b 2 2 d
pd.merge(df1,df2)#默认情况data1 key data2 0 0 b 1 1 1 b 1 2 6 b 1 3 2 a 0 4 4 a 0 5 5 a 0
df1.merge(df2)data1 key data2 0 0 b 1 1 1 b 1 2 6 b 1 3 2 a 0 4 4 a 0 5 5 a 0
df1.merge(df2,on = 'key',how = 'inner')#内连接,取交集data1 key data2 0 0 b 1 1 1 b 1 2 6 b 1 3 2 a 0 4 4 a 0 5 5 a 0
df1.merge(df2,on = 'key',how = 'outer')#外链接,取并集,并用nan填充data1 key data2 0 0.0 b 1.0 1 1.0 b 1.0 2 6.0 b 1.0 3 2.0 a 0.0 4 4.0 a 0.0 5 5.0 a 0.0 6 3.0 c NaN 7 NaN d 2.0
df1.merge(df2,on = 'key',how = 'left')#左连接,左侧DataFrame取全部,右侧DataFrame取部分data1 key data2 0 0 b 1.0 1 1 b 1.0 2 2 a 0.0 3 3 c NaN 4 4 a 0.0 5 5 a 0.0 6 6 b 1.0
df1.merge(df2,on = 'key',how = 'right')#右连接,右侧DataFrame取全部,左侧DataFrame取部分data1 key data2 0 0.0 b 1 1 1.0 b 1 2 6.0 b 1 3 2.0 a 0 4 4.0 a 0 5 5.0 a 0 6 NaN d 2
如果左右侧DataFrame的连接键列名不一致,但是取值有重叠,可使用left_on、right_on来指定左右连接键
df3 = pd.DataFrame({'lkey':['b','b','a','c','a','a','b'],'data1': range(7)})df3data1 lkey 0 0 b 1 1 b 2 2 a 3 3 c 4 4 a 5 5 a 6 6 b
df4 = pd.DataFrame({'rkey':['a','b','d'],'data2':range(3)})df4data2 rkey 0 0 a 1 1 b 2 2 d
df3.merge(df4,left_on = 'lkey',right_on = 'rkey',how = 'inner')data1 lkey data2 rkey 0 0 b 1 b 1 1 b 1 b 2 6 b 1 b 3 2 a 0 a 4 4 a 0 a 5 5 a 0 a
2、多对多的合并(一个表的连接键列有重复值,另一个表中的连接键有重复值)
df1 = pd.DataFrame({'key':['b','b','a','c','a','a','b'],'data1': range(7)})df1data1 key 0 0 b 1 1 b 2 2 a 3 3 c 4 4 a 5 5 a 6 6 b
df5 = pd.DataFrame({'key':['a','b','a','b','b'],'data2': range(5)})df5data2 key 0 0 a 1 1 b 2 2 a 3 3 b 4 4 b
df1.merge(df5)data1 key data2 0 0 b 1 1 0 b 3 2 0 b 4 3 1 b 1 4 1 b 3 5 1 b 4 6 6 b 1 7 6 b 3 8 6 b 4 9 2 a 0 10 2 a 2 11 4 a 0 12 4 a 2 13 5 a 0 14 5 a 2
合并小结
1)默认情况下,会将两个表中相同列名作为连接键
2)多对多,会采用笛卡尔积形式链接(左表连接键有三个值‘1,3,5',右表有两个值‘2,3',则会形成,(1,2)(1,3)(3,1),(3,2)。。。6种组合)
3)存在多个连接键的处理
left = pd.DataFrame({'key1':['foo','foo','bar'],'key2':['one','one','two'],'lval':[1,2,3]})right = pd.DataFrame({'key1':['foo','foo','bar','bar'],'key2':['one','one','one','two'],'rval':[4,5,6,7]})leftkey1 key2 lval 0 foo one 1 1 foo one 2 2 bar two 3
rightkey1 key2 rval 0 foo one 4 1 foo one 5 2 bar one 6 3 bar two 7
pd.merge(left,right,on = ['key1','key2'],how = 'outer') key1 key2 lval rval 0 foo one 1.0 4 1 foo one 1.0 5 2 foo one 2.0 4 3 foo one 2.0 5 4 bar two 3.0 7 5 bar one NaN 61)连接键是多对多关系,应执行笛卡尔积形式
2)多列应看连接键值对是否一致
4)对连接表中非连接列的重复列名的处理
pd.merge(left,right,on = 'key1')key1 key2_x lval key2_y rval 0 foo one 1 one 4 1 foo one 1 one 5 2 foo one 2 one 4 3 foo one 2 one 5 4 bar two 3 one 6 5 bar two 3 two 7
pd.merge(left,right,on = 'key1',suffixes = ('_left','_right'))key1 key2_left lval key2_right rval 0 foo one 1 one 4 1 foo one 1 one 5 2 foo one 2 one 4 3 foo one 2 one 5 4 bar two 3 one 6 5 bar two 3 two 7
2)索引上的合并
当连接键位于索引中时,成为索引上的合并,可以通过merge函数,传入left_index、right_index来说明应该被索引的情况。
一表中连接键是索引列、另一表连接键是非索引列
left1 = pd.DataFrame({'key':['a','b','a','a','b','c'],'value': range(6)})left1key value 0 a 0 1 b 1 2 a 2 3 a 3 4 b 4 5 c 5
right1 = pd.DataFrame({'group_val':[3.5,7]},index = ['a','b'])right1group_val a 3.5 b 7.0
pd.merge(left1,right1,left_on = 'key',right_index = True) key value group_val 0 a 0 3.5 2 a 2 3.5 3 a 3 3.5 1 b 1 7.0 4 b 4 7.0有上可知,left_on、right_on是指定表中非索引列为连接键,left_index、right_index是指定表中索引列为连接键,两者可以组合,是为了区分是否是索引列
两个表中的索引列都是连接键
left2 = pd.DataFrame(np.arange(6).reshape(3,2),index = ['a','b','e'],columns = ['0hio','nevada'])right2 = pd.DataFrame(np.arange(7,15).reshape(4,2),index = ['b','c','d','e'],columns = ['misso','ala'])left20hio nevada a 0 1 b 2 3 e 4 5
right2misso ala b 7 8 c 9 10 d 11 12 e 13 14
pd.merge(left2,right2,left_index = True,right_index = True,how = 'outer') 0hio nevada misso ala a 0.0 1.0 NaN NaN b 2.0 3.0 7.0 8.0 c NaN NaN 9.0 10.0 d NaN NaN 11.0 12.0 e 4.0 5.0 13.0 14.03)轴向连接
在这里展示一种新的连接方法,对应于numpy的concatenate函数,pandas有concat函数
#numpyarr =np.arange(12).reshape(3,4)arr array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]])np.concatenate([arr,arr],axis = 1)#横轴连接块 array([[ 0, 1, 2, 3, 0, 1, 2, 3], [ 4, 5, 6, 7, 4, 5, 6, 7], [ 8, 9, 10, 11, 8, 9, 10, 11]])concat函数参数表格
参数 说明 objs 参与连接的列表或字典,且列表或字典里的对象是pandas数据类型,唯一必须给定的参数 axis=0 指明连接的轴向,0是纵轴,1是横轴,默认是0 join ‘inner'(交集),‘outer'(并集),默认是‘outer'指明轴向索引的索引是交集还是并集 join_axis 指明用于其他n-1条轴的索引(层次化索引,某个轴向有多个索引),不执行交并集 keys 与连接对象有关的值,用于形成连接轴向上的层次化索引(外层索引),可以是任意值的列表或数组、元组数据、数组列表(如果将levels设置成多级数组的话) levels 指定用作层次化索引各级别(内层索引)上的索引,如果设置keys的话 names 用于创建分层级别的名称,如果设置keys或levels的话 verify_integrity 检查结果对象新轴上的重复情况,如果发横则引发异常,默认False,允许重复 ignore_index 不保留连接轴上的索引,产生一组新索引range(total_length)
s1 = pd.Series([0,1,2],index = ['a','b','c'])s2 = pd.Series([2,3,4],index = ['c','f','e'])s3 = pd.Series([4,5,6],index = ['c','f','g'])pd.concat([s1,s2,s3])#默认并集、纵向连接a 0 b 1 c 2 c 2 f 3 e 4 c 4 f 5 g 6 dtype: int64
pd.concat([s1,s2,s3],ignore_index = True)#生成纵轴上的并集,索引会自动生成新的一列0 0 1 1 2 2 3 2 4 3 5 4 6 4 7 5 8 6 dtype: int64
pd.concat([s1,s2,s3],axis = 1,join = 'inner')#纵向取交集,注意该方法对对象表中有重复索引时失效0 1 2 c 2 2 4
pd.concat([s1,s2,s3],axis = 1,join = 'outer')#横向索引取并集,纵向索引取交集,注意该方法对对象表中有重复索引时失效 0 1 2 a 0.0 NaN NaN b 1.0 NaN NaN c 2.0 2.0 4.0 e NaN 4.0 NaN f NaN 3.0 5.0 g NaN NaN 6.0concat函数小结
1)纵向连接,ignore_index = False ,可能生成重复的索引
2)横向连接时,对象索引不能重复
4)合并重叠数据
适用范围:
1)当两个对象的索引有部分或全部重叠时
2)用参数对象中的数据为调用者对象的缺失数据‘打补丁'
a = pd.Series([np.nan,2.5,np.nan,3.5,4.5,np.nan],index = ['a','b','c','d','e','f'])b = pd.Series(np.arange(len(a)),index = ['a','b','c','d','e','f'])aa NaNb 2.5c NaNd 3.5e 4.5f NaNdtype: float64ba 0b 1c 2d 3e 4f 5dtype: int32a.combine_first(b)#利用b填补了a的空值a 0.0b 2.5c 2.0d 3.5e 4.5f 5.0dtype: float64a = pd.Series([np.nan,2.5,np.nan,3.5,4.5,np.nan],index = ['g','b','c','d','e','f'])a.combine_first(b)#部分索引重叠a 0.0b 2.5c 2.0d 3.5e 4.5f 5.0g NaNdtype: float64小结
本篇博客主要讲述了一下内容:
1) merge函数合并数据集
2)concat函数合并数据集
3)combine_first函数,含有重叠索引的缺失值填补
以上这篇python merge、concat合并数据集的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例为大家分享了python实现多张图片垂直合并的具体代码,供大家参考,具体内容如下#coding:utf-8#image_merge.py#图片垂直合并#
在上一篇文章中,我整理了pandas在数据合并和重塑中常用到的concat方法的使用说明。在这里,将接着介绍pandas中也常常用到的join和merge方法m
本文实例讲述了php通过array_merge()函数合并两个数组的方法。分享给大家供大家参考。具体分析如下:php通过array_merge()函数合并两个数
数据合并有多种方式,其中最常见的应该就是交集和并集的求取。之前通过分析总结过pandas数据merge功能默认的行为,其实默认下求取的就是两个数据的“交集”。有
本文实例讲述了php通过array_merge()函数合并关联和非关联数组的方法。分享给大家供大家参考。具体分析如下:array_merge()是一个用于合并数