时间:2021-05-22
题目:
计算斐波那契数列。具体什么是斐波那契数列,那就是0,1,1,2,3,5,8,13,21,34,55,89,144,233。
要求:
时间复杂度尽可能少
分析:
给出了三种方法:
方法1:递归的方法,在这里空间复杂度非常大。如果递归层数非常多的话,在python里需要调整解释器默认的递归深度。默认的递归深度是1000。我调整了半天代码也没有调整对,因为递归到1000已经让我的电脑的内存有些撑不住了。
方法2:将递归换成迭代,这样时间复杂度也在代码中标注出来了。
方法3:这种方法利用了求幂的简便性,采用了位运算。但是代价在于需要建立矩阵,进行矩阵运算。所以,当所求的数列的个数较小时,该方法还没有第二种简便。但是当取的索引值n超级大时,这种方法就非常方便了。时间复杂度在代码中标注出来了。
代码:
#!usr/bin/python2.7# -*- coding=utf8 -*-# @Time : 18-1-3 下午2:53# @Author : Cecil Charlieimport sysimport copysys.setrecursionlimit(1000) # 用来调整解释器默认最大递归深度class Fibonacci(object): def __init__(self): pass def fibonacci1(self, n): ''' 原始的方法,时间复杂度为 o(2**n),因此代价较大 :param n: 数列的第n个索引 :return: 索引n对应的值 ''' if n < 1: return 0 if n == 1 or n == 2: return 1 return self.fibonacci1(n-1) + self.fibonacci1(n-2) @staticmethod def fibonacci2(n): """ 用循环替代递归,空间复杂度急剧降低,时间复杂度为o(n) """ if n < 1: return 0 if n == 1 or n == 2: return 1 res = 1 tmp1 = 0 tmp2 = 1 for _ in xrange(1, n): res = tmp1 + tmp2 tmp1 = tmp2 tmp2 = res return res def fibonacci3(self, n): """ 进一步减少迭代次数,采用矩阵求幂的方法,时间复杂度为o(log n),当然了,这种方法需要额外计算矩阵,计算矩阵的时间开销没有算在内.其中还运用到了位运算。 """ base = [[1, 1], [1, 0]] if n < 1: return 0 if n == 1 or n == 2: return 1 res = self.__matrix_power(base, n-2) return res[0][0] + res[1][0] def __matrix_power(self, mat, n): """ 求一个方阵的幂 """ if len(mat) != len(mat[0]): raise ValueError("The length of m and n is different.") if n < 0 or str(type(n)) != "<type 'int'>": raise ValueError("The power is unsuitable.") product, tmp = [], [] for _ in xrange(len(mat)): tmp.append(0) for _ in xrange(len(mat)): product.append(copy.deepcopy(tmp)) for _ in xrange(len(mat)): product[_][_] = 1 tmp = mat while n > 0: if (n & 1) != 0: # 按位与的操作,在幂数的二进制位为1时,乘到最终结果上,否则自乘 product = self.__multiply_matrix(product, tmp) tmp = self.__multiply_matrix(tmp, tmp) n >>= 1 return product @staticmethod def __multiply_matrix(mat1, mat2): """ 矩阵计算乘积 :param m: 矩阵1,二维列表 :param n: 矩阵2 :return: 乘积 """ if len(mat1[0]) != len(mat2): raise ValueError("Can not compute the product of mat1 and mat2.") product, tmp = [], [] for _ in xrange(len(mat2[0])): tmp.append(0) for _ in xrange(len(mat1)): product.append(copy.deepcopy(tmp)) for i in xrange(0, len(mat1)): for j in xrange(0, len(mat2[0])): for k in xrange(0, len(mat1[0])): if mat1[i][k] != 0 and mat2[k][j] != 0: product[i][j] += mat1[i][k] * mat2[k][j] return productf = Fibonacci()print f.fibonacci1(23)print f.fibonacci2(23)mat1 = [[2,4,5],[1,0,2],[4,6,9]]mat2 = [[2,9],[1,0],[5,7]]print f.fibonacci3(23)以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
今天我们来使用Python实现递归算法求指定位数的斐波那契数列首先我们得知道斐波那契数列是什么?斐波那契数列又叫兔子数列斐波那契数列就是一个数列从第三项
斐波那契数列(Fibonacci)最早由印度数学家Gopala提出,而第一个真正研究斐波那契数列的是意大利数学家LeonardoFibonacci,斐波那契数列
斐波那契数列(Fibonaccisequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(LeonardodaFibonacci)以兔子繁殖为例子而引入
斐波那契数列当年,典型的递归题目,斐波那契数列还记得吗?deffib(n):ifn==1orn==2:return1else:returnfib(n-1)+fi
本文实例讲述了php求斐波那契数的两种实现方式。分享给大家供大家参考,具体如下:斐波那契数,亦称之为斐波那契数列(意大利语:SuccessionediFibon