时间:2021-05-22
我就废话不多说了,直接上代码吧!
import tensorflow as tfdef model_1(): with tf.variable_scope("var_a"): a = tf.Variable(initial_value=[1, 2, 3], name="a") vars = [var for var in tf.trainable_variables() if var.name.startswith("var_a")] print(len(vars)) return varsdef model_2(): vars1 = model_1() with tf.variable_scope("var_b"): a = tf.Variable(initial_value=[1, 2, 3], name="a") vars2 = [var for var in tf.trainable_variables() if var.name.startswith("var")] print(len(vars2)) return vars1def pretrain_model1(): print("-------- model 1 ------") vars = model_1() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() saver.save(sess, "./model.ckpt")def train_model2(): print("-------- model 2 ------") model1_vars = model_2() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(var_list=model1_vars) saver.restore(sess, "./model.ckpt") vars = sess.run([model1_vars]) for var in vars: print(var)step = 2if step == 1: pretrain_model1()else: train_model2()以上这篇tensorflow 只恢复部分模型参数的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
在使用TensorFlow的过程中,保存模型参数变量是很重要的一个环节,既可以保证训练过程信息不丢失,也可以帮助我们在需要快速恢复或使用一个模型的时候,利用之前
numpy.random.shuffle在做将caffe模型和预训练的参数转化为tensorflow的模型和预训练的参数,以便微调,遇到如下函数:defgen_
1、只保存最佳的训练模型2、保存有所有有提升的模型3、加载模型4、参数说明只保存最佳的训练模型fromkeras.callbacksimportModelChe
1.检查点保存模型并不限于在训练模型后,在训练模型之中也需要保存,因为TensorFlow训练模型时难免会出现中断的情况,我们自然希望能够将训练得到的参数保存下
一、TensorFlow常规模型加载方法保存模型tf.train.Saver()类,.save(sess,ckpt文件目录)方法参数名称功能说明默认值var_l