python使用__slots__让你的代码更加节省内存

时间:2021-05-22

前言

在默认情况下,Python的新类和旧类的实例都有一个字典来存储属性值。这对于那些没有实例属性的对象来说太浪费空间了,当需要创建大量实例的时候,这个问题变得尤为突出。

因此这种默认的做法可以通过在新式类中定义了一个__slots__属性从而得到了解决。__slots__声明中包含若干实例变量,并为每个实例预留恰好足够的空间来保存每个变量,因此没有为每个实例都创建一个字典,从而节省空间。

本文主要介绍了关于python使用__slots__让你的代码更加节省内存的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧

现在来说说python中dict为什么比list浪费内存?

和list相比,dict 查找和插入的速度极快,不会随着key的增加而增加;dict需要占用大量的内存,内存浪费多。

而list查找和插入的时间随着元素的增加而增加;占用空间小,浪费的内存很少。

python解释器是Cpython,这两个数据结构应该对应C的哈希表和数组。因为哈希表需要额外内存记录映射关系,而数组只需要通过索引就能计算出下一个节点的位置,所以哈希表占用的内存比数组大,也就是dict比list占用的内存更大。

如果想更加详细了解,可以查看C的源代码。python官方链接:https://www.python.org/downloads/source/

如下代码是我从python官方截取的代码片段:

List 源码:

typedef struct { PyObject_VAR_HEAD PyObject **ob_item; /* ob_item contains space for 'allocated' elements. The number * currently in use is ob_size. * Invariants: * 0 <= ob_size <= allocated * len(list) == ob_size * ob_item == NULL implies ob_size == allocated == 0 * list.sort() temporarily sets allocated to -1 to detect mutations. * * Items must normally not be NULL, except during construction when * the list is not yet visible outside the function that builds it. */ Py_ssize_t allocated;} PyListObject;

Dict源码:

/* PyDict_MINSIZE is the minimum size of a dictionary. This many slots are * allocated directly in the dict object (in the ma_smalltable member). * It must be a power of 2, and at least 4. 8 allows dicts with no more * than 5 active entries to live in ma_smalltable (and so avoid an * additional malloc); instrumentation suggested this suffices for the * majority of dicts (consisting mostly of usually-small instance dicts and * usually-small dicts created to pass keyword arguments). */#define PyDict_MINSIZE 8 typedef struct { /* Cached hash code of me_key. Note that hash codes are C longs. * We have to use Py_ssize_t instead because dict_popitem() abuses * me_hash to hold a search finger. */ Py_ssize_t me_hash; PyObject *me_key; PyObject *me_value;} PyDictEntry; typedef struct _dictobject PyDictObject;struct _dictobject { PyObject_HEAD Py_ssize_t ma_fill; Py_ssize_t ma_used; /* The table contains ma_mask + 1 slots, and that's a power of 2. * We store the mask instead of the size because the mask is more * frequently needed. */ Py_ssize_t ma_mask; /* ma_table points to ma_smalltable for small tables, else to * additional malloc'ed memory. ma_table is never NULL! This rule * saves repeated runtime null-tests in the workhorse getitem and * setitem calls. */ PyDictEntry *ma_table; PyDictEntry *(*ma_lookup)(PyDictObject *mp, PyObject *key, long hash); PyDictEntry ma_smalltable[PyDict_MINSIZE];};

PyObject_HEAD 源码:

#ifdef Py_TRACE_REFS#define _PyObject_HEAD_EXTRA \ struct _object *_ob_next; \ struct _object *_ob_prev; #define _PyObject_EXTRA_INIT 0, 0, #else#define _PyObject_HEAD_EXTRA#define _PyObject_EXTRA_INIT#endif #define PyObject_HEAD \ _PyObject_HEAD_EXTRA \ Py_ssize_t ob_refcnt; \ struct _typeobject *ob_type;

PyObject_VAR_HEAD 源码:

/* PyObject_VAR_HEAD defines the initial segment of all variable-size * container objects. These end with a declaration of an array with 1 * element, but enough space is malloc'ed so that the array actually * has room for ob_size elements. Note that ob_size is an element count, * not necessarily a byte count. */#define PyObject_VAR_HEAD \ PyObject_HEAD \ Py_ssize_t ob_size;

现在知道了dict为什么比list 占用的内存空间更大。接下来如何让你的类更加的节省内存。

其实有两种解决方案:

第一种是使用__slots__ ;另外一种是使用Collection.namedtuple 实现。

首先用标准的方式写一个类:

#!/usr/bin/env pythonclass Foobar(object): def __init__(self, x): self.x = x@profiledef main(): f = [Foobar(42) for i in range(1000000)]if __name__ == "__main__": main()

然后,创建一个类Foobar(),然后实例化100W次。通过@profile查看内存使用情况。

运行结果:

该代码共使用了372M内存。

接下来通过__slots__代码实现该代码:

#!/usr/bin/env pythonclass Foobar(object): __slots__ = 'x' def __init__(self, x): self.x = x@profiledef main(): f = [Foobar(42) for i in range(1000000)]if __name__ == "__main__": main()

运行结果:

使用__slots__使用了91M内存,比使用__dict__存储属性值节省了4倍。

其实使用collection模块的namedtuple也可以实现__slots__相同的功能。namedtuple其实就是继承自tuple,同时也因为__slots__的值被设置成了一个空tuple以避免创建__dict__。

看看collection是如何实现的:

collection 和普通创建类方式相比,也节省了不少的内存。所在在确定类的属性值固定的情况下,可以使用__slots__方式对内存进行优化。但是这项技术不应该被滥用于静态类或者其他类似场合,那不是python程序的精神所在。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章