利用Python+Java调用Shell脚本时的死锁陷阱详解

时间:2021-05-22

前言

最近有一项需求,要定时判断任务执行条件是否满足并触发 Spark 任务,平时编写 Spark 任务时都是封装为一个 Jar 包,然后采用 Shell 脚本形式传入所需参数执行,考虑到本次判断条件逻辑复杂,只用 Shell 脚本完成不利于开发测试,所以调研使用了 Python 和 Java 分别调用 Spark 脚本的方法。

使用版本为 Python 3.6.4 及 JDK 8

Python

主要使用 subprocess 库。Python 的 API 变动比较频繁,在 3.5 之后新增了 run 方法,这大大降低了使用难度和遇见 Bug 的概率。

subprocess.run(["ls", "-l"])subprocess.run(["sh", "/path/to/your/script.sh", "arg1", "arg2"])

为什么说使用 run 方法可以降低遇见 Bug 的概率呢?

在没有 run 方法之前,我们一般调用其他的高级方法,即 Older high-level API,比如 call,check_all,或者直接创建 Popen 对象。因为默认的输出是 console,这时如果对 API 不熟悉或者没有仔细看 doc,想要等待子进程运行完毕并获取输出,使用了 stdout = PIPE 再加上 wait 的话,当输出内容很多时会导致 Buffer 写满,进程就一直等待读取,形成死锁。在一次将 Spark 的 log 输出到 console 时,就遇到了这种奇怪的现象,下边的脚本可以模拟:

# a.shfor i in {0..9999}; do echo '***************************************************'done p = subprocess.Popen(['sh', 'a.sh'], stdout=subprocess.PIPE)p.wait()

而 call 则在方法内部直接调用了 wait 产生相同的效果。

要避免死锁,则必须在 wait 方法调用之前自行处理掉输入输出,或者使用推荐的 communicate 方法。 communicate 方法是在内部生成了读取线程分别读取 stdout stderr,从而避免了 Buffer 写满。而之前提到的新的 run 方法,就是在内部调用了 communicate。

stdout, stderr = process.communicate(input, timeout=timeout)

Java

说完了 Python,Java 就简单多了。

Java 一般使用 Runtime.getRuntime().exec() 或者 ProcessBuilder 调用外部脚本:

Process p = Runtime.getRuntime().exec(new String[]{"ls", "-al"});Scanner sc = new Scanner(p.getInputStream());while (sc.hasNextLine()) { System.out.println(sc.nextLine());}// orProcess p = new ProcessBuilder("sh", "a.sh").start(); p.waitFor(); // dead lock

需要注意的是:这里 stream 的方向是相对于主程序的,所以 getInputStream() 就是子进程的输出,而 getOutputStream() 是子进程的输入。

基于同样的 Buffer 原因,假如调用了 waitFor 方法等待子进程执行完毕而没有及时处理输出的话,就会造成死锁。
由于 Java API 很少变动,所以没有像 Python 那样提供新的 run 方法,但是开源社区也给出了自己的方案,如commons exec,或 http:///article/2071275/core-java/when-runtime-exec—won-t.html

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章