Python3.5 + sklearn利用SVM自动识别字母验证码方法示例

时间:2021-05-22

前言

最近正在研究人工智能,为了加深对算法的理解,决定写个自动设别验证码的程序。看了看网上的demo,大部分都是python2的写法,而且验证码的识别都是用的数字做例子,那我就写个基于python3字母识别的程序,不过一路写下来碰到不少坑,大家感兴趣的话可以慢慢看。

图片识别有几个比较大的步骤是必须完成的:

1、有大量的验证码图片作为样本

2、图片要进行处理 流程是:灰度化==》二值化==》字符切割==》识别分类

3、图像识别要提取特征值,然后把图片二值化的数据当做样本做训练,最后基于样本完成对新验证码的识别

一、大量验证码准备

因为要写字母识别,所以需要大量的字母验证码,正好之前做过某电商的项目,印象中是纯字母的查了下果然是的所以就用那个网站作为例子了。

获取验证码方法很简单,找到验证码动态生成的地址,

然后调用python的urllib.request获得图片然后保存就好了

二、图片的灰度化和二值化

其实为了增强识别率,我们将彩色的图片灰度化,

这样就变成了黑白两色,黑的是255白的是0,这样更容易让机器来识别。

灰度化和二值化之前、后的效果图

三、图片的分割

经过观察验证码可以发现,验证码是4位的字母,

同时验证码直接是有空白分隔的(后面的验证码有黏连的单独讲)

这里使用垂直投影法,根据投影进行图片的切割。这个算法讲起来太复杂,看代码吧。。。

效果如下,反正就是切成了4个图片

四、识别分类

这里因为图片太多了,要对每个图片分26个字母的哪一个太麻烦,所以借用Google的tesseract这个OCR的软件,用它来帮我识别下图片是哪个字母(当然它识别的成功率不高,不然也不用人工智能了),然后识别错误的我再手动分类。


经过ocr识别和人工分类后,我的temp目录下就变成了这样的,每个目录下都是正确的字母图片


五、提取特征值

将字母的文件夹图片取出,提取特征值然后存储到文本文件里

六、机器训练

这里使用sklearn.svm这个支持向量机的算法,来对数据进行分类。

SVM的算法是啥,可以看看知乎大神的讲解https:///zjy090/verifyCode(本地下载)

下次研究遗传算法GA的实现等写好了也写个demo分享给大家

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章