时间:2021-05-22
浅谈NumPy中的维度Axis
NumPy中的维度是一个很重要的概念,很多函数的参数都需要给定维度Axis,如何直观的理解维度呢?我们首先以二维数组为例进行说明,然后推广到多维数组。
(有人将ndim属性叫维度,将axis叫轴,我还是习惯将axis称之为维度,axis=0称为第一个维度)
二维数组的列子
下面是一个二维数组的列子:
In [1]: import numpy as npIn [2]: x = np.random.randint(0, 9, (2, 3))In [3]: xOut[3]:array([[0, 8, 6], [1, 2, 1]])In [4]: x.ndimOut[4]: 2In [5]: x.shapeOut[5]: (2, 3)In [6]: x[0]Out[6]: array([0, 8, 6])In [7]: x[:, 0]Out[7]: array([0, 1])In [8]: x.sum(axis=0)Out[8]: array([ 1, 10, 7])In [9]: x.sum(axis=1)Out[9]: array([14, 4])In [10]: x[0] + x[1]Out[10]: array([ 1, 10, 7])In [11]: x[:, 0] + x[:, 1] + x[:, 2]Out[11]: array([14, 4])看上面这个例子,x是一个2行3列的数组,所以x是一个二维数组。
从第6和第7个输入输出,我们可以肯定地说"对于二维数组,第一维指的是行,第二维指的是列"。
我们通过sum求和函数,探究一下x的第一维和第二维的意义?从第8个和第9个输入输出,我们可以看到对于参数axis=0,其结果是数组列的和;而对于参数axis=1,其参数是数组行的和。
对于axis=0第一个维度求和,不是将第一维度(行)中的所有元素相加,而是沿着第一个维度,将对应其他维度(列)的数据相加,分解开来就是第10个输入输出。同理,对于axis=1,是沿着列,将行中的元素相加。
NumPy中对于维度的操作都是以类似这样的逻辑操作的。
多维数组
对于多维数组我们如何准确区分维度呢?下面以图示进行说明:
所以,我的结论就是:在概念上维度是从整体到局部看的,最外围的是第一个维度,然后依次往里,最内部的就是最后一维。
下面我们用代码验证一下上面的结论:
In [19]: x = np.random.randint(0, 9, (2, 3, 4))In [20]: xOut[20]:array([[[0, 7, 5, 5], [6, 3, 1, 3], [7, 5, 3, 4]], [[8, 1, 4, 6], [8, 1, 4, 8], [3, 0, 8, 2]]])In [21]: x[0]Out[21]:array([[0, 7, 5, 5], [6, 3, 1, 3], [7, 5, 3, 4]])In [22]: x[:, 0, :]Out[22]:array([[0, 7, 5, 5], [8, 1, 4, 6]])可以看到,第21个输入输出取到的是第一维的第一个元素,第22个输入输出取到的是第二维的第一个元素。大家可以细细体味一下!
以上这篇(标题)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
合并numpy中numpy中可以通过concatenate,指定参数axis=0或者axis=1,在纵轴和横轴上合并两个数组。importnumpyasnpim
在实际使用numpy时,我们常常会使用numpy数组的-1维度和”:”用以调用numpy数组中的元素。也经常因为数组的维度而感到困惑。总体来说,”:”用以表示当
根据代码中运行的结果来看,主要由以下几种:1.sum():将array中每个元素相加的结果2.axis对应的是维度的相加。比如:1、axis=0时,对饮搞得是第
基础介绍:numpy.deletenumpy.delete(arr,obj,axis=None)[source]Returnanewarraywithsub-a
concat()是将tensor沿着指定维度连接起来。其中tensorflow1.3版中是这样定义的:concat(values,axis,name='conc