关于python中plt.hist参数的使用详解

时间:2021-05-22

如下所示:

matplotlib.pyplot.hist( x, bins=10, range=None, normed=False, weights=None, cumulative=False, bottom=None, histtype=u'bar', align=u'mid', orientation=u'vertical', rwidth=None, log=False, color=None, label=None, stacked=False, hold=None, **kwargs)

x : (n,) array or sequence of (n,) arrays

这个参数是指定每个bin(箱子)分布的数据,对应x轴

bins : integer or array_like, optional

这个参数指定bin(箱子)的个数,也就是总共有几条条状图

normed : boolean, optional

If True, the first element of the return tuple will be the counts normalized to form a probability density, i.e.,n/(len(x)`dbin)

这个参数指定密度,也就是每个条状图的占比例比,默认为1

color : color or array_like of colors or None, optional

这个指定条状图的颜色

我们绘制一个10000个数据的分布条状图,共50份,以统计10000分的分布情况

""" Demo of the histogram (hist) function with a few features. In addition to the basic histogram, this demo shows a few optional features: * Setting the number of data bins * The ``normed`` flag, which normalizes bin heights so that the integral of the histogram is 1. The resulting histogram is a probability density. * Setting the face color of the bars * Setting the opacity (alpha value). """ import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt # example data mu = 100 # mean of distribution sigma = 15 # standard deviation of distribution x = mu + sigma * np.random.randn(10000) num_bins = 50 # the histogram of the data n, bins, patches = plt.hist(x, num_bins, normed=1, facecolor='blue', alpha=0.5) # add a 'best fit' line y = mlab.normpdf(bins, mu, sigma) plt.plot(bins, y, 'r--') plt.xlabel('Smarts') plt.ylabel('Probability') plt.title(r'Histogram of IQ: $\mu=100$, $\sigma=15$') # Tweak spacing to prevent clipping of ylabel plt.subplots_adjust(left=0.15) plt.show()

以上这篇关于python中plt.hist参数的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章