浅谈tensorflow中几个随机函数的用法

时间:2021-05-22

如下所示:

tf.constant(value, dtype=None, shape=None)

创建一个常量tensor,按照给出value来赋值,可以用shape来指定其形状。value可以是一个数,也可以是一个list。 如果是一个数,那么这个常亮中所有值的按该数来赋值。

tf.random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32) tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32) tf.random_uniform(shape,minval=0,maxval=None,dtype=tf.float32)

这几个都是用于生成随机数tensor的。尺寸是shape

random_normal:正太分布随机数,均值mean,标准差stddev

truncated_normal:截断正态分布随机数,均值mean,标准差stddev,不过只保留[mean-2*stddev,mean+2*stddev]范围内的随机数

random_uniform:均匀分布随机数,范围为[minval,maxval]

以上这篇浅谈tensorflow中几个随机函数的用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章