时间:2021-05-22
实例如下所示:
from functools import reducefrom operator import muldef get_num_params(): num_params = 0 for variable in tf.trainable_variables(): shape = variable.get_shape() num_params += reduce(mul, [dim.value for dim in shape], 1) return num_params以上这篇tensorflow 获取模型所有参数总和数量的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
一、TensorFlow常规模型加载方法保存模型tf.train.Saver()类,.save(sess,ckpt文件目录)方法参数名称功能说明默认值var_l
numpy.random.shuffle在做将caffe模型和预训练的参数转化为tensorflow的模型和预训练的参数,以便微调,遇到如下函数:defgen_
一、TensorFlow模型保存和提取方法1.TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取。tf.train.Saver对
1.检查点保存模型并不限于在训练模型后,在训练模型之中也需要保存,因为TensorFlow训练模型时难免会出现中断的情况,我们自然希望能够将训练得到的参数保存下
网上关于tensorflow模型文件ckpt格式转pb文件的帖子很多,本人几乎尝试了所有方法,最后终于成功了,现总结如下。方法无外乎下面两种:使用tensorf