时间:2021-05-22
环境:numpy,pandas,python3
在机器学习和深度学习的过程中,对于处理预测,回归问题,有时候变量是时间,需要进行合适的转换处理后才能进行学习分析,关于时间的变量如下所示,利用pandas和numpy对csv文件中时间进行处理。
date (UTC) Price 01/01/2015 0:00 48.1 01/01/2015 1:00 47.33 01/01/2015 2:00 42.27#coding:utf-8import datetimeimport pandas as pdimport numpy as npimport pickle#用pandas将时间转为标准格式dateparse = lambda dates: pd.datetime.strptime(dates,'%d/%m/%Y %H:%M')#将时间栏合并,并转为标准时间格式rawdata = pd.read_csv('RealMarketPriceDataPT.csv',parse_dates={'timeline':['date','(UTC)']},date_parser=dateparse)#定义一个将时间转为数字的函数,s为字符串def datestr2num(s): #toordinal()将时间格式字符串转为数字 return datetime.datetime.strptime(s,'%Y-%m-%d %H:%M:%S').toordinal()x = []y = []new_date = []for i in range(rawdata.shape[0]): x_convert = int(datestr2num(str(rawdata.ix[i,0]))) new_date.append(x_convert) y_convert = rawdata.ix[i,1].astype(np.float32) x.append(x_convert) y.append(y_convert)x = np.array(x).astype(np.float32)"""with open('price.pickle','wb') as f: pickle.dump((x,y),f)"""print(datetime.datetime.fromordinal(new_date[0]),'------>>>>>>',new_date[0])print(datetime.datetime.fromordinal(new_date[10]),'------>>>>>>',new_date[10])print(datetime.datetime.fromordinal(new_date[20]),'------>>>>>>',new_date[20])print(datetime.datetime.fromordinal(new_date[30]),'------>>>>>>',new_date[30])print(datetime.datetime.fromordinal(new_date[40]),'------>>>>>>',new_date[40])print(datetime.datetime.fromordinal(new_date[50]),'------>>>>>>',new_date[50])结果
将csv文件中的时间栏合并为一列,并转为方便数据分析的float或int类型
以上这篇利用numpy和pandas处理csv文件中的时间方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
项目实现知识点:Pandas库及pyecharts库Pandas:数据分析和处理工具。pd.read_csv():读取csv文件。pyecharts:绘图库,提
read_csv是pandas中专门用于csv文件读取的功能,不过这并不是唯一的处理方式。pandas中还有读取表格的通用函数read_table。接下来使用r
用pandas处理.csv文件时,有时我们希望保存的.csv文件没有表头,于是我去看了DataFrame.to_csv的document。发现只需要再添加hea
Python中有许多方便的库可以用来进行数据处理,尤其是Numpy和Pandas,再搭配matplot画图专用模块,功能十分强大。CSV(Comma-Separ
实际中,很多数据都是存为txt文件、csv文件等,但是在程序中处理的时候numpy数组或列表是最方便的。本文简单介绍读入txt文件以及将之转化为numpy数组或