OpenCV哈里斯(Harris)角点检测的实现

时间:2021-05-22

环境

pip install opencv-python==3.4.2.16 pip install opencv-contrib-python==3.4.2.16

理论

克里斯·哈里斯Chris Harris)和迈克·史蒂芬斯(Mike Stephens)在1988年的论文《组合式拐角和边缘检测器》中做了一次尝试找到这些拐角的尝试,所以现在将其称为哈里斯拐角检测器。

函数:cv2.cornerHarris()cv2.cornerSubPix()

示例代码

import cv2import numpy as np filename = 'molecule.png'img = cv2.imread(filename)gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) gray = np.float32(gray)dst = cv2.cornerHarris(gray,2,3,0.04) #result is dilated for marking the corners, not importantdst = cv2.dilate(dst,None) # Threshold for an optimal value, it may vary depending on the image.img[dst>0.01*dst.max()]=[0,0,255] cv2.imshow('dst',img)if cv2.waitKey(0) & 0xff == 27: cv2.destroyAllWindows()

原图

输出图

SubPixel精度的角落

import cv2import numpy as np filename = 'molecule.png'img = cv2.imread(filename)gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # find Harris cornersgray = np.float32(gray)dst = cv2.cornerHarris(gray,2,3,0.04)dst = cv2.dilate(dst,None)ret, dst = cv2.threshold(dst,0.01*dst.max(),255,0)dst = np.uint8(dst) # find centroidsret, labels, stats, centroids = cv2.connectedComponentsWithStats(dst) # define the criteria to stop and refine the cornerscriteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.001)corners = cv2.cornerSubPix(gray,np.float32(centroids),(5,5),(-1,-1),criteria) # Now draw themres = np.hstack((centroids,corners))res = np.int0(res)img[res[:,1],res[:,0]]=[0,0,255]img[res[:,3],res[:,2]] = [0,255,0] cv2.imwrite('subpixel5.png',img)

输出图

参考

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html#harris-corners

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章