时间:2021-05-22
获得某层tensor的输出维度
代码如下所示:
from keras import backend as K@wraps(Conv2D)def my_conv(*args,**kwargs): new_kwargs={'kernel_regularizer':l2(5e-6)} new_kwargs['padding']='valid' #'same' new_kwargs['strides']=(2,2) if kwargs.get('strides')==(2,2) else (1,1) # new_kwargs['kernel_initializer']=keras.initializers.glorot_uniform(seed=0) new_kwargs.update(kwargs) return Conv2D(*args,**new_kwargs)def conv(x,**kwargs): x=my_conv(**kwargs)(x) x=BatchNormalization(axis=-1)(x) x=LeakyReLU(alpha=0.05)(x) return xdef inception_resnet_a(x_input): x_short=x_input s1=conv(x_input,filters=32,kernel_size=(1,1)) s2=conv(x_input,filters=32,kernel_size=(1,1)) s2=conv(s2,filters=32,kernel_size=(3,3),padding='same') s3=conv(x_input,filters=32,kernel_size=(1,1)) s3=conv(s3,filters=48,kernel_size=(3,3),padding='same') s3=conv(s3,filters=64,kernel_size=(3,3),padding='same') x=keras.layers.concatenate([s1,s2,s3]) x=conv(x,filters=384,kernel_size=(1,1)) x=layers.Add()([x_short,x]) x=LeakyReLU(alpha=0.05)(x) print(K.int_shape(x))使用K.int_shape(tensor_name)即可得到对应tensor的维度
以上这篇keras获得model中某一层的某一个Tensor的输出维度教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
前言:keras默认提供了如何获取某一个层的某一个节点的输出,但是没有提供如何获取某一个层的输出的接口,所以有时候我们需要获取某一个层的输出,则需要自己编写代码
在深度学习中,如果我们想获得某一个层上的featuremap,就像下面的图这样,怎么做呢?我们的代码是使用keras写的VGG16网络,网络结构如图:那么我们随
问题:训练好的网络模型想知道中间某一层的权重或者看看中间某一层的特征,如何处理呢?1、获取某一层权重,并保存到excel中;以resnet18为例说明:
tf.reduce_mean函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值,主要用作降维或者计算tensor(图像)的平均值。
什么是代理? 为某一个对象创建一个代理对象,程序不直接用原本的对象,而是由创建的代理对象来控制原对象,通过代理类这中间一层,能有效控制对委托类对象的直接访问,