时间:2021-05-22
基于pytorch来讲
MSELoss()多用于回归问题,也可以用于one_hotted编码形式,
CrossEntropyLoss()名字为交叉熵损失函数,不用于one_hotted编码形式
MSELoss()要求batch_x与batch_y的tensor都是FloatTensor类型
CrossEntropyLoss()要求batch_x为Float,batch_y为LongTensor类型
(1)CrossEntropyLoss() 举例说明:
比如二分类问题,最后一层输出的为2个值,比如下面的代码:
class CNN (nn.Module ) : def __init__ ( self , hidden_size1 , output_size , dropout_p) : super ( CNN , self ).__init__ ( ) self.hidden_size1 = hidden_size1 self.output_size = output_size self.dropout_p = dropout_p self.conv1 = nn.Conv1d ( 1,8,3,padding =1) self.fc1 = nn.Linear (8*500, self.hidden_size1 ) self.out = nn.Linear (self.hidden_size1,self.output_size ) def forward ( self , encoder_outputs ) : cnn_out = F.max_pool1d ( F.relu (self.conv1(encoder_outputs)),2) cnn_out = F.dropout ( cnn_out ,self.dropout_p) #加一个dropout cnn_out = cnn_out.view (-1,8*500) output_1 = torch.tanh ( self.fc1 ( cnn_out ) ) output = self.out ( ouput_1) return output最后的输出结果为:
上面一个tensor为output结果,下面为target,没有使用one_hotted编码。
训练过程如下:
cnn_optimizer = torch.optim.SGD(cnn.parameters(),learning_rate,momentum=0.9,\ weight_decay=1e-5)criterion = nn.CrossEntropyLoss() def train ( input_variable , target_variable , cnn , cnn_optimizer , criterion ) : cnn_output = cnn( input_variable ) print(cnn_output) print(target_variable) loss = criterion ( cnn_output , target_variable) cnn_optimizer.zero_grad () loss.backward( ) cnn_optimizer.step( ) #print('loss: ',loss.item()) return loss.item() #返回损失说明CrossEntropyLoss()是output两位为one_hotted编码形式,但target不是one_hotted编码形式。
(2)MSELoss() 举例说明:
网络结构不变,但是标签是one_hotted编码形式。下面的图仅做说明,网络结构不太对,出来的预测也不太对。
如果target不是one_hotted编码形式会报错,报的错误如下。
目前自己理解的两者的区别,就是这样的,至于多分类问题是不是也是样的有待考察。
以上这篇基于MSELoss()与CrossEntropyLoss()的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
以前我浏览博客的时候记得别人说过,BCELoss与CrossEntropyLoss都是用于分类问题。可以知道,BCELoss是BinaryCrossEntrop
Java中==运算符与equals方法的区别及intern方法详解1.==运算符与equals()方法2.hashCode()方法的应用3.intern()方法
详解Java中CheckedException与RuntimeException的区别 Java里有个很重要的特色是Exception,也就是说允许程序产生例外
C++中引用与指针的区别实例详解引用是从C++才引入的,在C中不存在。为了搞清楚引用的概念,得先搞明白变量的定义及引用与变量的区别,变量的要素一共有两个:名称与
PHP对象的浅复制与深复制的实例详解最近在看原型模式时注意到这个问题~~PHP中对象'='与‘clone'的区别实例代码://聚合类classObjA{publ