时间:2021-05-22
计算曲线长度,根据线积分公式:
,令积分函数f(x,y,z)为1,即计算曲线的长度,将其微元化:
其中
根据此时便可在python编程实现,给出4个例子,代码中已有详细注释,不再赘述
'''计算曲线长度,根据线积分公式:\int_A^Bf(x,y,z)dl,令积分函数为1,即计算曲线的长度'''import numpy as npfrom mpl_toolkits.mplot3d import *import matplotlib.pyplot as plt## 求二维圆周长,半径为1,采用参数形式def circle_2d(dt=0.001,plot=True): dt = dt # 变化率 t = np.arange(0,2*np.pi, dt) x = np.cos(t) y = np.sin(t) # print(len(t)) area_list = [] # 存储每一微小步长的曲线长度 for i in range(1,len(t)): # 计算每一微小步长的曲线长度,dx = x_{i}-x{i-1},索引从1开始 dl_i = np.sqrt( (x[i]-x[i-1])**2 + (y[i]-y[i-1])**2 ) # 将计算结果存储起来 area_list.append(dl_i) area = sum(area_list)# 求和计算曲线在t:[0,2*pi]的长度 print("二维圆周长:{:.4f}".format(area)) if plot: fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x,y) plt.title("circle") plt.show()## 二维空间曲线,采用参数形式def curve_param_2d(dt=0.0001,plot=True): dt = dt # 变化率 t = np.arange(0,2*np.pi, dt) x = t*np.cos(t) y = t*np.sin(t) # print(len(t)) area_list = [] # 存储每一微小步长的曲线长度 # 下面的方式是循环实现 # for i in range(1,len(t)): # # 计算每一微小步长的曲线长度,dx = x_{i}-x{i-1},索引从1开始 # dl_i = np.sqrt( (x[i]-x[i-1])**2 + (y[i]-y[i-1])**2 ) # # 将计算结果存储起来 # area_list.append(dl_i) # 更加pythonic的写法 area_list = [np.sqrt( (x[i]-x[i-1])**2 + (y[i]-y[i-1])**2 ) for i in range(1,len(t))] area = sum(area_list)# 求和计算曲线在t:[0,2*pi]的长度 print("二维参数曲线长度:{:.4f}".format(area)) if plot: fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x,y) plt.title("2-D Parameter Curve") plt.show()## 二维空间曲线def curve_2d(dt=0.0001,plot=True): dt = dt # 变化率 t = np.arange(-6,10, dt) x = t y = x**3/8 - 4*x + np.sin(3*x) # print(len(t)) area_list = [] # 存储每一微小步长的曲线长度 # for i in range(1,len(t)): # # 计算每一微小步长的曲线长度,dx = x_{i}-x{i-1},索引从1开始 # dl_i = np.sqrt( (x[i]-x[i-1])**2 + (y[i]-y[i-1])**2 ) # # 将计算结果存储起来 # area_list.append(dl_i) area_list = [np.sqrt( (x[i]-x[i-1])**2 + (y[i]-y[i-1])**2 ) for i in range(1,len(t))] area = sum(area_list)# 求和计算曲线在t:[0,2*pi]的长度 print("二维曲线长度:{:.4f}".format(area)) if plot: fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x,y) plt.title("2-D Curve") plt.show()## 三维空间曲线,采用参数形式def curve_3d(dt=0.001,plot=True): dt = dt # 变化率 t = np.arange(0,2*np.pi, dt) x = t*np.cos(t) y = t*np.sin(t) z = 2*t # print(len(t)) area_list = [] # 存储每一微小步长的曲线长度 for i in range(1,len(t)): # 计算每一微小步长的曲线长度,dx = x_{i}-x{i-1},索引从1开始 dl_i = np.sqrt( (x[i]-x[i-1])**2 + (y[i]-y[i-1])**2 + (z[i]-z[i-1])**2 ) # 将计算结果存储起来 area_list.append(dl_i) area = sum(area_list)# 求和计算曲线在t:[0,2*pi]的长度 print("三维空间曲线长度:{:.4f}".format(area)) if plot: fig = plt.figure() ax = fig.add_subplot(111,projection='3d') ax.plot(x,y,z) plt.title("3-D Curve") plt.show()if __name__ == '__main__': circle_2d(plot=True) curve_param_2d(plot=True) curve_2d(plot=True) curve_3d(plot=True)得到结果:
二维圆周长:6.2830二维参数曲线长度:21.2558二维曲线长度:128.2037三维空间曲线长度:25.3421以上这篇python微元法计算函数曲线长度的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
在许多单位施工图纸中我们会看到许多桩号在实际施工中我们如何通过wps快速且批量的计算出曲线和直线长度(有些桩号是整桩号便于计算如果桩号不是整桩号这难于计算)下面
电视几寸一般是指电视机屏幕的对角线长度。例如:根据1英寸=2.54厘米计算,47英寸的电视机屏幕的对角线长度为:47乘2.54约为119.4厘米。因此屏幕的对角
分辨率计算方法如下,其中X:长度像素数;Y:宽度像素数;Z:屏幕尺寸即对角线长度。 屏幕分辨率是指纵横向上的像素点数,单位是px。屏幕分辨率确定计算机屏幕上显
本文实例为大家分享了python使用插值法画出平滑曲线的具体代码,供大家参考,具体内容如下实现所需的库numpy、scipy、matplotlib实现所需的方法
C语言strlen()函数:返回字符串的长度头文件:#includestrlen()函数用来计算字符串的长度,其原型为:unsignedintstrlen(ch