时间:2021-05-22
计算图
在 TensorFlow 中用计算图来表示计算任务。 计算图,是一种有向图,用来定义计算的结构,实际上就是一系列的函数的组合。 用图的方式,用户通过用一些简单的容易理解的数学函数组件,就可以建立一个复杂的运算
在 TensorFlow 使用图,分为两步:建立计算图 和 执行图
图,在形式上由结点 Nodes 和边 Edges 组成。- Nodes,用圆圈表示,代表一些对数据进行的计算或者操作(Operation)。 - Edges,用箭头表示,是操作之间传递的实际值(Tensor)
建立图
访问上下文管理器
用with表示我们用 context manager 告诉 TensorFlow 我们要向某个具体的 graph 添加 Op 了
执行图图必须在会话(Session)里被启动,会话(Session)将图的 op 分发到 CPU 或 GPU 之类的设备上,同时提供执行 op 的方法,这些方法执行后,将产生的张量(tensor)返回
## 开启session
sess = tf.Session()`一旦开启了 Session,就可以用 run() 来计算想要的 Tensor 的值
用完会话,记得关掉
sess.close()Fetches
fetches是session.run()的一个参数,它可以接收任何一个我们想要执行的op或者Tensor,或者他们对应的list结构。
比如:sess.run(b)就是告诉Session要把计算b所需要的结点都找到按顺序执行并且输出结果。
全局变量初始化
tf.global_variables_initializer()
表示将所有定义的Variable变量都准备好,以便于后续使用,这个Op也可以传给给session.run.比如:
init = tf.global_variables_initializer()…sess.run(init)张量Tensor和OP
在tensorflow中使用tensor来表示所有的数据结构,计算图中操作Op结点之间传递的都是Tensor
Variable
Variable,变量是维护图执行过程中的状态信息的,需要它来保持和更新参数数值,是需要动态调整的。
name_scopes
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
使用TensorFlow的一个优势是,它可以维护操作状态和基于反向传播自动地更新模型变量。TensorFlow通过计算图来更新变量和最小化损失函数来反向传播误差
前言Tensorflow中可以使用tensorboard这个强大的工具对计算图、loss、网络参数等进行可视化。本文并不涉及对tensorboard使用的介绍,
TensorFlow是一个采用数据流图(dataflowgraphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则
这里,我们将采用TensorFlow内建函数实现简单的CNN,并用MNIST数据集进行测试第1步:加载相应的库并创建计算图会话importnumpyasnpim
动态图和静态图目前神经网络框架分为静态图框架和动态图框架,PyTorch和TensorFlow、Caffe等框架最大的区别就是他们拥有不同的计算图表现形式。Te