时间:2021-05-22
解读Gabor滤波器
Fourier 变换是一种信号处理的有力工具,可以将图像从空域转换到频域,并提取到空域上不易提取到的特征。但是Fourier变换缺乏时间和位置的局部信息。
Gabor 变换是一种短时加窗Fourier变换(简单理解起来就是在特定时间窗内做Fourier变换),是短时傅里叶变换中窗函数取为高斯函数时的一种特殊情况。因此,Gabor滤波器可以在频域上不同尺度、不同方向上提取相关的特征。另外,Gabor函数与人眼的作用相仿,所以经常用作纹理识别上,并取得了较好的效果。
在二维空间中,使用一个三角函数(a)(如正弦函数)与一个高斯函数(b)叠加,我们得到了一个Gabor滤波器(c)。如下图所示:
Gabor函数解读
二维Gabor函数的数学表达式如下:
复数表示:
实数部分:
虚数部分:
x'、y' 计算公式:
介绍公式中各个参数的含义:
波长(λ):表示Gabor核函数中余弦函数的波长参数。它的值以像素为单位制定,通常大于等于2,但不能大于输入图像尺寸的1/5.
方向(θ):表示Gabor滤波核中平行条带的方向。有效值为从0°到360°的实数。
相位偏移(ψ):表示Gabor核函数中余弦函数的相位参数。它的取值范围为-180°到180°。其中,0°与180°对应的方程与原点对称,-90°和90°的方程关于原点成中心对称。
长宽比(γ):空间纵横比,决定了Gabor函数形状的椭圆率。当γ=1时,形状是圆形;当γ<1时,形状随着平行条纹方向而拉长。通常该值为0.5.
带宽(b):Gabor滤波器的半响应空间频率带宽b和σ/λ的比率有关,其中σ表示Gabor函数的高斯因子的标准差。三者有如下关系:
σ的值不能直接设置,它仅随带宽b变换。带宽的值必须是正实数,通常为1,此时,标准差和波长的关系为 σ=0.56λ。带宽越小,标准差越大,Gabor形状越大,可见平行条纹数量越多。
python实现Gabor滤波器
# Gabor 滤波器实现# K_size:Gabor核大小 K_size x K_size# Sigma : σ# Gamma: γ# Lambda:λ# Psi : ψ# angle: θdef Gabor_filter(K_size=111, Sigma=10, Gamma=1.2, Lambda=10, Psi=0, angle=0): # get half size d = K_size // 2 # prepare kernel gabor = np.zeros((K_size, K_size), dtype=np.float32) # each value for y in range(K_size): for x in range(K_size): # distance from center px = x - d py = y - d # degree -> radian theta = angle / 180. * np.pi # get kernel x _x = np.cos(theta) * px + np.sin(theta) * py # get kernel y _y = -np.sin(theta) * px + np.cos(theta) * py # fill kernel gabor[y, x] = np.exp(-(_x**2 + Gamma**2 * _y**2) / (2 * Sigma**2)) * np.cos(2*np.pi*_x/Lambda + Psi) # kernel normalization gabor /= np.sum(np.abs(gabor)) return gaborpython做出不同角度Gabor滤波器的图像
import cv2import numpy as npimport matplotlib.pyplot as plt# Gabor 滤波器实现# K_size:Gabor核大小 K_size x K_size# Sigma : σ# Gamma: γ# Lambda:λ# Psi : ψ# angle: θdef Gabor_filter(K_size=111, Sigma=10, Gamma=1.2, Lambda=10, Psi=0, angle=0): # get half size d = K_size // 2 # prepare kernel gabor = np.zeros((K_size, K_size), dtype=np.float32) # each value for y in range(K_size): for x in range(K_size): # distance from center px = x - d py = y - d # degree -> radian theta = angle / 180. * np.pi # get kernel x _x = np.cos(theta) * px + np.sin(theta) * py # get kernel y _y = -np.sin(theta) * px + np.cos(theta) * py # fill kernel gabor[y, x] = np.exp(-(_x**2 + Gamma**2 * _y**2) / (2 * Sigma**2)) * np.cos(2*np.pi*_x/Lambda + Psi) # kernel normalization gabor /= np.sum(np.abs(gabor)) return gabor# define each angleAs = [0, 45, 90, 135]# prepare pyplotplt.subplots_adjust(left=0, right=1, top=1, bottom=0, hspace=0, wspace=0.2)# each anglefor i, A in enumerate(As): # get gabor kernel gabor = Gabor_filter(K_size=111, Sigma=10, Gamma=1.2, Lambda=10, Psi=0, angle=A) # normalize to [0, 255] out = gabor - np.min(gabor) out /= np.max(out) out *= 255 out = out.astype(np.uint8) plt.subplot(1, 4, i+1) plt.imshow(out, cmap='gray') plt.axis('off') plt.title("Angle "+str(A))plt.savefig("out.png")plt.show()实验输出Gabor滤波器图像
opencv(python)中使用Gabor滤波器
函数原型:
retval=cv.getGaborKernel(ksize, sigma, theta, lambd, gamma[, psi[, ktype]])
函数使用举例
import numpy as np import cv2 as cv # retval = cv.getGaborKernel(ksize, sigma, theta, lambd, gamma[, psi[, ktype]])# Ksize 是一个元组retval = cv.getGaborKernel(ksize=(111,111), sigma=10, theta=60, lambd=10, gamma=1.2)image1 = cv.imread('../paojie.jpg')# dst = cv.filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]])result = cv.filter2D(image1,-1,retval)cv.imshow('result',result)cv.waitKey(0)cv.destroyAllWindows()实验结果:
参考:
python实现Gabor滤波器
Gabor滤波器参数详解
Gabor滤波器原理及opencv中的实现
到此这篇关于python Gabor滤波器讲解的文章就介绍到这了,更多相关Gabor滤波器内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
原理平滑也称模糊,是一项简单且使用频率很高的图像处理方法。平滑处理时需要用到一个滤波器。最常用的滤波器是线性滤波器,线性滤波处理的输出像素值(例如:)是输入像素
滤波器的作用: 滤波器是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的直流电。对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,
洗衣机滤波器坏了的症状如下: 1、检查晶振或陶瓷滤波器是否好坏时,用万用表欧姆档测量,如果测量结果为无穷大,则说明晶振或陶瓷滤波器是好的。 2、把万用表拨到
算法流程:将图像转换为灰度图像利用Sobel滤波器求出海森矩阵(Hessianmatrix):将高斯滤波器分别作用于Ix²、Iy²、IxIy
Css的filter常用滤波器属性及语句大全语法:STYLE="filter:filtername(fparameter1,fparameter2...)"