时间:2021-05-22
介绍
硕士阶段的毕设是关于昆虫图像分类的,代码写到一半,上周五导师又给我新的昆虫图片数据集了,新图片中很多图片很大,但是图片中的昆虫却很小,所以我就想着先处理一下图片,把图片中的昆虫裁剪下来,这样除去大部分无关背景,应该可以提高识别率。
原图片举例(将红色矩形框部分裁剪出来)):
step1:加载图片,转成灰度图
image = cv2.imread("353.jpg")gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)step2:用Sobel算子计算x,y方向上的梯度,之后在x方向上减去y方向上的梯度,通过这个减法,我们留下具有高水平梯度和低垂直梯度的图像区域。
gradX = cv2.Sobel(gray, ddepth=cv2.cv.CV_32F, dx=1, dy=0, ksize=-1)gradY = cv2.Sobel(gray, ddepth=cv2.cv.CV_32F, dx=0, dy=1, ksize=-1)# subtract the y-gradient from the x-gradientgradient = cv2.subtract(gradX, gradY)gradient = cv2.convertScaleAbs(gradient)执行完这一步,得到的图像如下:
step3:去除图像上的噪声。首先使用低通滤泼器平滑图像(9 x 9内核),这将有助于平滑图像中的高频噪声。低通滤波器的目标是降低图像的变化率。如将每个像素替换为该像素周围像素的均值。这样就可以平滑并替代那些强度变化明显的区域。
然后,对模糊图像二值化。梯度图像中不大于90的任何像素都设置为0(黑色)。 否则,像素设置为255(白色)。
# blur and threshold the imageblurred = cv2.blur(gradient, (9, 9))(_, thresh) = cv2.threshold(blurred, 90, 255, cv2.THRESH_BINARY)执行完这一步,得到的图像如下:
step4:在上图中我们看到蜜蜂身体区域有很多黑色的空余,我们要用白色填充这些空余,使得后面的程序更容易识别昆虫区域,这需要做一些形态学方面的操作。
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 25))closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)处理之后的图像如下:
step5:从上图我们发现图像上还有一些小的白色斑点,这会干扰之后的昆虫轮廓的检测,要把它们去掉。分别执行4次形态学腐蚀与膨胀。
# perform a series of erosions and dilationsclosed = cv2.erode(closed, None, iterations=4)closed = cv2.dilate(closed, None, iterations=4)执行完这步,得到的图形如下:
step6:找出昆虫区域的轮廓。cv2.findContours()函数第一个参数是要检索的图片,必须是为二值图,即黑白的(不是灰度图),所以读取的图像要先转成灰度的,再转成二值图,我们在第三步用cv2.threshold()函数已经得到了二值图。第二个参数表示轮廓的检索模式,有四种:
第三个参数为轮廓的近似方法
cv2.findContours()函数返回两个值,一个是轮廓本身,还有一个是每条轮廓对应的属性。cv2.findContours()函数返回第一个值是list,list中每个元素都是图像中的一个轮廓,用numpy中的ndarray表示。每一个ndarray里保存的是轮廓上的各个点的坐标。我们把list排序,点最多的那个轮廓就是我们要找的昆虫的轮廓。
OpenCV中通过cv2.drawContours在图像上绘制轮廓。
cv2.minAreaRect()函数:
主要求得包含点集最小面积的矩形,这个矩形是可以有偏转角度的,可以与图像的边界不平行。
执行完这步得到的图形如下:
step7:裁剪。box里保存的是绿色矩形区域四个顶点的坐标。我将按下图红色矩形所示裁剪昆虫图像。找出四个顶点的x,y坐标的最大最小值。新图像的高=maxY-minY,宽=maxX-minX。
裁剪出的图片如下:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
如下所示:运行环境:python3.6.4opencv3.4.0#-*-coding:utf-8-*-"""Note:使用Python和OpenCV检测图像中的
前言:当我们通过阈值分割提取到图像中的目标物体后,我们就需要通过边缘检测来提取目标物体的轮廓,使用这两种方法基本能够确定物体的边缘或者前景。接下来,我们通常需要
最近在OpenCV-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓。根据网上的教程,PythonOpenCV的轮廓提取函数会
简单几行就可以实现对动态物体的追踪,足见opencv在图像处理上的强大。python代码:importcv2importnumpyasnpcamera=cv2.
基于一个实现的基于OpenCv的运动物体检测算法,可以用于检测行人或者其他运动物体。#include#include#include#includeintmai