时间:2021-05-22
禁用GPU设置
# 在import tensorflow之前import osos.environ['CUDA_VISIBLE_DEVICES'] = '-1'CPU与GPU对比
显卡:GTX 1066
CPU
GPU
简单测试:GPU比CPU快5秒
补充知识:tensorflow使用CPU可以跑(运行),但是使用GPU却不能用的情况
在跑的时候可以让加些选项:
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True))
其中allow_soft_placement能让tensorflow遇到无法用GPU跑的数据时,自动切换成CPU进行。
log_device_placement则记录一些日志。
以上这篇使用Tensorflow-GPU禁用GPU设置(CPU与GPU速度对比)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
一、硬件要求首先,TensorFlow-gpu不同于CPU版本的地方在于,GPU版本必须有GPU硬件的支撑。TensorFlow对NVIDIA显卡的支持较为完备
我使用的是tensorflow-gpu(1.2.1)和Theano(0.9.0),2个4G显存NvidiaQuadroM2000GPU。1.theano:Val
在tensorflow中,我们可以使用tf.device()指定模型运行的具体设备,可以指定运行在GPU还是CUP上,以及哪块GPU上。设置使用GPU使用tf.
问题我们使用anoconda创建envs环境下的Tensorflow-gpu版的,但是当我们在Pycharm设置里的工程中安装Keras后,发现调用keras无
问题描述:我通过控制台使用tensorflow-gpu没问题,但是通过pycharm使用却不可以,如下所示:通过控制台:answer@answer-deskto