时间:2021-05-22
离散特征的编码分为两种情况:
1、离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one-hot编码
2、离散特征的取值有大小的意义,比如size:[X,XL,XXL],那么就使用数值的映射{X:1,XL:2,XXL:3}
使用pandas可以很方便的对离散型特征进行one-hot编码
import pandas as pddf = pd.DataFrame([ ['green', 'M', 10.1, 'class1'], ['red', 'L', 13.5, 'class2'], ['blue', 'XL', 15.3, 'class1']]) df.columns = ['color', 'size', 'prize', 'class label'] size_mapping = { 'XL': 3, 'L': 2, 'M': 1}df['size'] = df['size'].map(size_mapping) class_mapping = {label:idx for idx,label in enumerate(set(df['class label']))}df['class label'] = df['class label'].map(class_mapping)说明:对于有大小意义的离散特征,直接使用映射就可以了,{'XL':3,'L':2,'M':1}
Using the get_dummies will create a new column for every unique string in a certain column:使用get_dummies进行one-hot编码pd.get_dummies(df)以上这篇pandas使用get_dummies进行one-hot编码的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
one-hot编码的作用使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点将离散特征通过one-hot编码映射到
将数据标签变为类似MNIST的one-hot编码形式defone_hot(indices,depth,on_value=None,off_value=None,
step:1.将标签转换为one-hot形式。2.将每一个one-hot标签中的1改为预设样本权重的值即可在Pytorch中使用样本权重。eg:对于单个样本:l
离散特征的编码分为两种情况:1、离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one-hot编码2、离散特征的取值有大小的意
简单的LSTM问题,能够预测一句话的下一个字词是什么固定长度的句子,一个句子有3个词。使用one-hot编码各种引用importkerasfromkeras.m