时间:2021-05-22
前言
大家都知道Python 读文件的方式多种多样,但是当需要读取一个大文件的时候,不同的读取方式会有不一样的效果。下面就来看看详细的介绍吧。
场景
逐行读取一个 2.9G 的大文件
方法
对每一行的读取进行一次分割字符串操作
以下方法都使用 with…as 方法打开文件。
with 语句适用于对资源进行访问的场合,确保不管使用过程中是否发生异常都会执行必要的“清理”操作,释放资源,比如文件使用后自动关闭、线程中锁的自动获取和释放等。
方法一 最通用的读文件方式
with open(file, 'r') as fh: for line in fh.readlines(): line.split("|")运行结果: 耗时 15.4346568584 秒
系统监视器中显示内存从 4.8G 一下子飙到了 8.4G, fh.readlines() 将读取的所有行数据存到内存,这种方法适合小文件。
方法二
with open(file, 'r') as fh: line = fh.readline() while line: line.split("|")运行结果: 耗时 22.3531990051 秒
内存几乎没有变化,因为内存中只存取一行的数据,但是时间明显比上一次的长,对于进一步处理数据来说效率不高。
方法三
with open(file) as fh: for line in fh: line.split("|")运行结果: 耗时 13.9956979752 秒
内存几乎没有变化,速度也比方法二快。
for line in fh 将文件对象 fh 视为可迭代的,它自动使用缓冲的 IO 和内存管理,因此您不必担心大文件。这是很 pythonic 的方式!
方法四 fileinput 模块
for line in fileinput.input(file): line.split("|")运行结果: 耗时 26.1103110313 秒
内存增加了 200-300 MB,速度是以上最慢的。
总结
以上方法仅供参考,公认的大文件读取方法还是三最好。但是具体情况还是要根据机器的性能、处理数据的复杂度。
好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对的支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
Python四种逐行读取文件内容的方法下面四种Python逐行读取文件内容的方法,分析了各种方法的优缺点及应用场景,以下代码在python3中测试通过,pyth
Python支持四种不同的数值类型,包括int(整数)long(长整数)float(浮点实际值)complex(复数),本文章向码农介绍python四种数值类型
python中,遍历dict的方法有四种。但这四种遍历的性能如何呢?我做了如下的测试l=[(x,x)forxinxrange(10000)]d=dict(l)f
Java中文件流的两个主要方式就是字符流和字节流,如下图:具体的使用方法可以参考官方文档,这里主要介绍四种常见的文件读取方式1.通过字节来读取文件(常用于二进制
学习Bash读取和写入数据的不同方式,以及何时使用每种方法。当你使用Bash编写脚本时,有时你需要从一个文件中读取数据或向一个文件写入数据。有时文件可能包含配置