时间:2021-05-22
前言
大家在使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame,关于python中pandas.DataFrame的基本操作,大家可以查看这篇文章。
pandas.DataFrame排除特定行
如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列表方式传入,还可以传入字典,指定列进行筛选。
但是如果我们只想要所有内容中不包含特定行的内容,却并没有一个isnotin()方法。我今天的工作就遇到了这样的需求,经常查找之后,发现只能换种方式使用isin()来实现这个需求。
示例如下:
In [3]: df = pd.DataFrame([['GD', 'GX', 'FJ'], ['SD', 'SX', 'BJ'], ['HN', 'HB' ...: , 'AH'], ['HEN', 'HEN', 'HLJ'], ['SH', 'TJ', 'CQ']], columns=['p1', 'p2 ...: ', 'p3'])In [4]: dfOut[4]: p1 p2 p30 GD GX FJ1 SD SX BJ2 HN HB AH3 HEN HEN HLJ4 SH TJ CQ如果只想要p1为GD和HN的两行,可以这么做:
In [8]: df[df.p1.isin(['GD', 'HN'])]Out[8]: p1 p2 p30 GD GX FJ2 HN HB AH但是如果我们想要除了这两行之外的数据,就需要绕点路了。
原理是先把p1取出并转换为列表,然后再从列表中去不需要的行(值)去除,然后再在DataFrame中使用isin()
In [9]: ex_list = list(df.p1)In [10]: ex_list.remove('GD')In [11]: ex_list.remove('HN')In [12]: ex_listOut[12]: ['SD', 'HEN', 'SH']In [13]: df[df.p1.isin(ex_list)]Out[13]: p1 p2 p31 SD SX BJ3 HEN HEN HLJ4 SH TJ CQ总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者使用python能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对的支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
pandas.DataFrame选取特定行使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame,如果我们想要像Exce
本文通过一个csv实例文件来展示如何删除Pandas.DataFrame的行和列数据文件名为:example.csv内容为:datespringsummerau
python中的pandas模块中对重复数据去重步骤:1)利用DataFrame中的duplicated方法返回一个布尔型的Series,显示各行是否有重复行,
背景:dataFrame的数据,想对某一个列做逻辑处理,生成新的列,或覆盖原有列的值下面例子中的df均为pandas.DataFrame()的数据1、增加新列,
用pandas中的DataFrame时选取行或列:importnumpyasnpimportpandasaspdfrompandasimportSereis,D