时间:2021-05-22
前言
简单介绍下python的几个自动求导工具,tangent、autograd、sympy;
在各种机器学习、深度学习框架中都包含了自动微分,微分主要有这么四种:手动微分法、数值微分法、符号微分法、自动微分法,这里分别简单走马观花(hello world式)的介绍下下面几种微分框架;
sympy 强大的科学计算库,使用的是符号微分,通过生成符号表达式进行求导;求得的导数不一定为最简的,当函数较为复杂时所生成的表达式树异常复杂;
autograd自动微分先将符号微分用于基本的算子,带入数值并保存中间结果,后应用于整个函数;自动微分本质上就是图计算,容易做很多优化所以广泛应用于各种机器学习深度学习框架中;
tangent 为源到源(source-to-source)的自动微分框架,在计算函数f微分时他通过生成新函数f_grad来计算该函数的微分,与目前所存在的所有自动微分框架都有所不同;由于它是通过生成全新的函数来计算微分所以具有非常搞的可读性、可调式性这也是官方所说的与当前自动微分框架的重大不同;
sympy 求导
输出结果表达式z的导函数z‘=2*y
print(func)把y 等于6 带入计算 结果 为12
print(func.evalf(subs ={'y':3}))Autograd求偏导
import autograd.numpy as np from autograd import grad #表达式 f(x,y)=x^2+3xy+y^2 #df/dx = 2x+3y #df/dy = 3x+2y #x=1,y=2 #df/dx=8 #df/dy=7 def fun(x, y): z=x**2+3*x*y+y**2 return z fun_grad = grad(fun) fun_grad(2.,1.)输出:7.0
tangent求导
默认为求z关于x的偏导数
dy_dx = tangent.grad(fun)输出偏导数值为 8 ,z' = 2 * x,此处x传任何值都是一样的
df(4, y=1)可通过使用wrt参数指定求关于某个参数的偏导数,下面为求z关于y的偏导数
df = tangent.grad(funs, wrt=([1]))输出值为10 ,z' = 2 *y,此处x传任何值都是一样的
df(x=0, y=5)上面说了那么多也没体现出tangent的核心:源到源(source-to-source)
在生成导函数的时候加入verbose=1参数,即可看到tangent为我们生成的用于计算导数的函数,默认情况下该值为0所以我们没感觉到tangent的求导与别的自动微分框架有什么区别;
def df(x): z = x**2 return z df = tangent.grad(df, verbose=1) df(x=2)在执行完上述代码后,我们看到了tangent为我们所生成用于求导数的函数:
def ddfdx(x, bz=1.0): z = x ** 2 assert tangent.shapes_match(z, bz), 'Shape mismatch between return value (%s) and seed derivative (%s)' % (numpy.shape(z), numpy.shape(bz)) # Grad of: z = x ** 2 _bx = 2 * x * bz bx = _bx return bxddfdx函数就是所生成的函数,从中我们也可以看到表达式z的导函数z'=2 * x,tangent就是通过执行该函数用于求得导数的;
sympy 中的自动微分只是它强大的功能之一,autograd 从名字也可知它就是为了自动微分而生的,tangent初出茅庐2017年底Google才发布的自动微分方法也比较新颖,从17年发v0.1.8版本后也没见发版,源码更新也不够活跃;sympy、autograd比较成熟,tangent还有待观察;
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
有如下的xml文件:复制代码代码如下:12下面介绍python解析xml文件的几种方法,使用python模块实现。方式1,python模块实现自动遍历所有节点:
matlab解微分方程组方法是: 1、首先,在matlab中解常微分方程有两种方法,一种是符号解法,另一种是数值解法。在本科阶段的微分数学题,基本上可以通过符
本文实例讲述了python解析xml文件的方法。分享给大家供大家参考。具体如下:python解析xml非常方便。在diveintopython中也有讲解。如果x
本文实例讲述了Python爬虫DNS解析缓存方法。分享给大家供大家参考,具体如下:前言:这是Python爬虫中DNS解析缓存模块中的核心代码,是去年的代码了,现
本文实例总结了几种在php中url编码解析函数,如parse_url、rawurldecode、rawurlencode、urldecode、urlencode