Matplotlib scatter绘制散点图的方法实现

时间:2021-05-22

前言

考虑到很多同学可能还没有安装matplotlib包,这里给大家提供我常用的安装方法。首先Win键+R,输入命令cmd打开命令行工具,再次在命令行工具中输入pip install matplotlib就可以直接安装了,安装后会提示安装成功。

一、简单散点图

1.代码

import numpy as npimport matplotlib.pyplot as plt#生成散点数据n = 1024X = np.random.normal(0,1,n)Y = np.random.normal(0,1,n)plt.scatter(X,Y) #输入散点数据plt.show() #显示散点图

2.运行结果

3.注释

np.random.normal(0,1,n)的作用是产生一个符合正太分布的数据样本,听起来可能有点专业化了,我们目前只需要知道它的作用是产生一组样本数据就ok了。

(下面的内容了解即可无需深入,后面再进行深入学习)
np.random.normal(size,loc,scale)
参数含义:
loc:此概率分布的均值(对应着整个分布的中心centre)
scale:此概率分布的标准差(对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高)
size:输出的shape,默认为None,只输出一个值

二、复杂的散点图

较上一次散点图所做出的变动:

1.修改散点的颜色
2.将三组散点数据放到一张图上
3.添加散点图图例

1.代码

import numpy as npimport matplotlib.pyplot as pltfig, ax = plt.subplots()for color in ['red', 'green', 'purple']: #每一次循环都会产生一组散点数据 n = 400 x = np.random.normal(0,1,n) y = np.random.normal(0,1,n) ax.scatter(x, y, c=color, label=color ,alpha=0.5)ax.legend() #显示图例plt.show()

2.运行结果

3.注释

1.fig, ax = plt.subplots()是一个将多组数据放到一张图显示的操作,可以简单理解为多图合一操作。

其返回值
fig: matplotlib.figure.Figure 对象
ax:子图对象( matplotlib.axes.Axes)或者是他的数组

#函数定义看看就好了def subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw): fig = figure(**fig_kw) axs = fig.subplots(nrows=nrows, ncols=ncols, sharex=sharex, sharey=sharey, squeeze=squeeze, subplot_kw=subplot_kw, gridspec_kw=gridspec_kw) return fig, axs

2.ax.scatter(x, y, c=color, label=color ,alpha=0.5)中的c是散点的颜色,label是图例中的标签,alpha是散点的透明度,通过给alpha值介于0和1之间来调整散点的透明度。

四、散点图参数讲解

这部分还是先通过代码来直观了解一下scatter常用的参数

1.代码

import numpy as npimport matplotlib.pyplot as pltn = 30x = np.random.normal(0,1,n)y = np.random.normal(0,1,n)plt.subplot(321)plt.scatter(x, y, s=80, c='red', marker='^')plt.subplot(322)plt.scatter(x, y, s=80, c='green', marker=(7, 1))plt.subplot(323)plt.scatter(x, y, s=1, c='purple', marker=(6, 1))plt.subplot(324)plt.scatter(x, y, s=400, c='red', marker=(5, 1))plt.subplot(325)plt.scatter(x, y, s=80, c='green', marker='+')plt.subplot(326)plt.scatter(x, y, s=80, c='purple', marker=(5, 2))plt.show()

2.运行结果

3.参数说明

fig, axes = plt.subplots(23):表示一次性在figure上创建成2*3的网格,plt.subplot(321)代表在6个网格中的第一个网格创建图像,plt.subplot(322)代表在6个网格中的第二个网格创建图像,以此类推。对于这个函数的其他参数,我会在之后再详细讲解,把时间花在刀刃上,花最少的时间学习最有用的东西

plt.scatter(x, y, s=80, c='purple', marker=(5, 2))中的s代表散点的大小,参照第三和第四张图。marker表示散点的样式,元组表示法参照第二、四、六张图,也可以取特定的符号作为marker的值,参照第一、五张图。

截图取自官网。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章