时间:2021-05-22
pytorch保存数据
pytorch保存数据的格式为.t7文件或者.pth文件,t7文件是沿用torch7中读取模型权重的方式。而pth文件是python中存储文件的常用格式。而在keras中则是使用.h5文件。
# 保存模型示例代码print('===> Saving models...')state = { 'state': model.state_dict(), 'epoch': epoch # 将epoch一并保存}if not os.path.isdir('checkpoint'): os.mkdir('checkpoint')torch.save(state, './checkpoint/autoencoder.t7')保存用到torch.save函数,注意该函数第一个参数可以是单个值也可以是字典,字典可以存更多你要保存的参数(不仅仅是权重数据)。
pytorch读取数据
pytorch读取数据使用的方法和我们平时使用预训练参数所用的方法是一样的,都是使用load_state_dict这个函数。
下方的代码和上方的保存代码可以搭配使用。
print('===> Try resume from checkpoint')if os.path.isdir('checkpoint'): try: checkpoint = torch.load('./checkpoint/autoencoder.t7') model.load_state_dict(checkpoint['state']) # 从字典中依次读取 start_epoch = checkpoint['epoch'] print('===> Load last checkpoint data') except FileNotFoundError: print('Can\'t found autoencoder.t7')else: start_epoch = 0 print('===> Start from scratch')以上是pytorch读取的方法汇总,但是要注意,在使用官方的预处理模型进行读取时,一般使用的格式是pth,使用官方的模型读取命令会检查你模型的格式是否正确,如果不是使用官方提供模型通过下面的函数强行读取模型(将其他模型例如caffe模型转过来的模型放到指定目录下)会发生错误。
def vgg19(pretrained=False, **kwargs): """VGG 19-layer model (configuration "E") Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = VGG(make_layers(cfg['E']), **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['vgg19'])) return model假如我们有从caffe模型转过来的pytorch模型([0-255,BGR]),我们可以使用:
model_dir = '自己的模型地址'model = VGG()model.load_state_dict(torch.load(model_dir + 'vgg_conv.pth'))也就是pytorch的读取函数进行读取即可。
以上这篇Pytorch之保存读取模型实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
1Pytorch以ONNX方式保存模型defsaveONNX(model,filepath):'''保存ONNX模型:parammodel:神经网络模型:par
今天用pytorch保存模型时遇到bugCan'tpickle在google上查找原因,发现是保存时保存了整个模型的原因,而模型中有一些自定义的参数将torch
在使用pytorch训练模型,经常需要加载大量图片数据,因此pytorch提供了好用的数据加载工具Dataloader。为了实现小批量循环读取大型数据集,在Da
下面代码的功能是先训练一个简单的模型,然后保存模型,同时保存到一个pb文件当中,后续可以从pd文件里读取权重值。importtensorflowastfimpo
pytorch输出中间层特征:tensorflow输出中间特征,2种方式:1.保存全部模型(包括结构)时,需要之前先add_to_collection或者用sl