时间:2021-05-22
TensorFlow保存模型代码
import tensorflow as tffrom tensorflow.python.framework import graph_utilvar1 = tf.Variable(1.0, dtype=tf.float32, name='v1')var2 = tf.Variable(2.0, dtype=tf.float32, name='v2')var3 = tf.Variable(2.0, dtype=tf.float32, name='v3')x = tf.placeholder(dtype=tf.float32, shape=None, name='x')x2 = tf.placeholder(dtype=tf.float32, shape=None, name='x2')addop = tf.add(x, x2, name='add')addop2 = tf.add(var1, var2, name='add2')addop3 = tf.add(var3, var2, name='add3')initop = tf.global_variables_initializer()model_path = './Test/model.pb'with tf.Session() as sess: sess.run(initop) print(sess.run(addop, feed_dict={x: 12, x2: 23})) output_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['add', 'add2', 'add3']) # 将计算图写入到模型文件中 model_f = tf.gfile.FastGFile(model_path, mode="wb") model_f.write(output_graph_def.SerializeToString())读取模型代码
import tensorflow as tfwith tf.Session() as sess: model_f = tf.gfile.FastGFile("./Test/model.pb", mode='rb') graph_def = tf.GraphDef() graph_def.ParseFromString(model_f.read()) c = tf.import_graph_def(graph_def, return_elements=["add2:0"]) c2 = tf.import_graph_def(graph_def, return_elements=["add3:0"]) x, x2, c3 = tf.import_graph_def(graph_def, return_elements=["x:0", "x2:0", "add:0"]) print(sess.run(c)) print(sess.run(c2)) print(sess.run(c3, feed_dict={x: 23, x2: 2}))以上这篇TensorFlow实现保存训练模型为pd文件并恢复就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
使用tensorflow训练模型时,我们可以使用tensorflow自带的Save模块tf.train.Saver()来保存模型,使用方式很简单就是在训练完模型
1.检查点保存模型并不限于在训练模型后,在训练模型之中也需要保存,因为TensorFlow训练模型时难免会出现中断的情况,我们自然希望能够将训练得到的参数保存下
一,直接保存pb1,首先我们当然可以直接在tensorflow训练中直接保存为pb为格式,保存pb的好处就是使用场景是实现创建模型与使用模型的解耦,使得创建模型
下面代码的功能是先训练一个简单的模型,然后保存模型,同时保存到一个pb文件当中,后续可以从pd文件里读取权重值。importtensorflowastfimpo
TensorFlow模型保存/载入我们在上线使用一个算法模型的时候,首先必须将已经训练好的模型保存下来。tensorflow保存模型的方式与sklearn不太一