详解Python中where()函数的用法

时间:2021-05-22

where()的用法

首先强调一下,where()函数对于不同的输入,返回的只是不同的。

1当数组是一维数组时,返回的值是一维的索引,所以只有一组索引数组

2当数组是二维数组时,满足条件的数组值返回的是值的位置索引,因此会有两组索引数组来表示值的位置

例如

>>>b=np.arange(10)>>>barray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])>>>np.where(b>5) (array([6, 7, 8, 9], dtype=int64),)>>>a=np.reshape(np.arange(20),(4,5))>>>a array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]])>>>np.where(a>10)(array([2, 2, 2, 2, 3, 3, 3, 3, 3], dtype=int64), array([1, 2, 3, 4, 0, 1, 2, 3, 4], dtype=int64))

对numpy标准库里的解释做一个介绍:

numpy.where(condition[, x, y])

基于条件condition,返回值来自x或者y.

如果.

参数:

condition: 数组,bool值

When True, yieldx, otherwise yieldy.

x, y: array_like, 可选

x与y的shape要相同,当condition中的值是true时返回x对应位置的值,false是返回y的

返回值:

out: ndarray or tuple of ndarrays

①如果参数有condition,x和y,它们三个参数的shape是相同的。那么,当condition中的值是true时返回x对应位置的值,false是返回y的。

②如果参数只有condition的话,返回值是condition中元素值为true的位置索引,切是以元组形式返回,元组的元素是ndarray数组,表示位置的索引

>>> np.where([[True, False], [True, True]],... [[1, 2], [3, 4]],... [[9, 8], [7, 6]])array([[1, 8], [3, 4]])>>>>>> np.where([[0, 1], [1, 0]])(array([0, 1]), array([1, 0]))>>>>>> x = np.arange(9.).reshape(3, 3)>>> np.where( x > 5 )(array([2, 2, 2]), array([0, 1, 2]))>>> x[np.where( x > 3.0 )] # Note: result is 1D.array([ 4., 5., 6., 7., 8.])>>> np.where(x < 5, x, -1) # Note: broadcasting.array([[ 0., 1., 2.], [ 3., 4., -1.], [-1., -1., -1.]])Find the indices of elements of x that are in goodvalues.>>>>>> goodvalues = [3, 4, 7]>>> ix = np.in1d(x.ravel(), goodvalues).reshape(x.shape)>>> ixarray([[False, False, False], [ True, True, False], [False, True, False]], dtype=bool)>>> np.where(ix)(array([1, 1, 2]), array([0, 1, 1]))

两种方法的示例代码

第一种用法

np.where(conditions,x,y)

if (condituons成立):

  数组变x

else:

  数组变y

import numpy as np'''x = np.random.randn(4,4)print(np.where(x>0,2,-2))#试试效果xarr = np.array([1.1,1.2,1.3,1.4,1.5])yarr = np.array([2.1,2.2,2.3,2.4,2.5])zarr = np.array([True,False,True,True,False])result = [(x if c else y) for x,y,c in zip(xarr,yarr,zarr)]print(result)#where()函数处理就相当于上面那种方案result = np.where(zarr,xarr,yarr)print(result)'''#发现个有趣的东西# #处理2组数组# #True and True = 0# #True and False = 1# #False and True = 2# #False and False = 3cond2 = np.array([True,False,True,False])cond1 = np.array([True,True,False,False])#第一种处理 太长太丑result = []for i in range(4): if (cond1[i] & cond2[i]): result.append(0); elif (cond1[i]): result.append(1); elif (cond2[i]): result.append(2); else : result.append(3);print(result)#第二种 直接where() 很快很方便result = np.where(cond1 & cond2,0,np.where(cond1,1,np.where(cond2,2,3)))print(result)#第三种 更简便(好像这跟where()函数半毛钱的关系都没有result = 1*(cond1 & -cond2)+2*(cond2 & -cond1)+3*(-(cond1 | cond2)) (没想到还可以这么表达吧)print(result)

第二种用法

where(conditions)

相当于给出数组的下标

x = np.arange(16)print(x[np.where(x>5)])#输出:(array([ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype=int64),)x = np.arange(16).reshape(-1,4)print(np.where(x>5))#(array([1, 1, 2, 2, 2, 2, 3, 3, 3, 3], dtype=int64), array([2, 3, 0, 1, 2, 3, 0, 1, 2, 3], dtype=int64))#注意这里是坐标是前面的一维的坐标,后面是二维的坐标ix = np.array([[False, False, False], [ True, True, False], [False, True, False]], dtype=bool)print(np.where(ix))#输出:(array([1, 1, 2], dtype=int64), array([0, 1, 1], dtype=int64))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章