时间:2021-05-22
背景
在公司用多卡训练模型,得到权值文件后保存,然后回到实验室,没有多卡的环境,用单卡训练,加载模型时出错,因为单卡机器上,没有使用DataParallel来加载模型,所以会出现加载错误。
原因
DataParallel包装的模型在保存时,权值参数前面会带有module字符,然而自己在单卡环境下,没有用DataParallel包装的模型权值参数不带module。本质上保存的权值文件是一个有序字典。
解决方法
1.在单卡环境下,用DataParallel包装模型。
2.自己重写Load函数,灵活。
from collections import OrderedDictdef myOwnLoad(model, check): modelState = model.state_dict() tempState = OrderedDict() for i in range(len(check.keys())-2): print modelState.keys()[i], check.keys()[i] tempState[modelState.keys()[i]] = check[check.keys()[i]] temp = [[0.02]*1024 for i in range(200)] # mean=0, std=0.02 tempState['myFc.weight'] = torch.normal(mean=0, std=torch.FloatTensor(temp)).cuda() tempState['myFc.bias'] = torch.normal(mean=0, std=torch.FloatTensor([0]*200)).cuda() model.load_state_dict(tempState) return model补充知识:Pytorch:多GPU训练网络与单GPU训练网络保存模型的区别
测试环境:Python3.6 + Pytorch0.4
在pytorch中,使用多GPU训练网络需要用到 【nn.DataParallel】:
gpu_ids = [0, 1, 2, 3]device = t.device("cuda:0" if t.cuda.is_available() else "cpu") # 只能单GPU运行net = LeNet()if len(gpu_ids) > 1: net = nn.DataParallel(net, device_ids=gpu_ids)net = net.to(device)而使用单GPU训练网络:
device = t.device("cuda:0" if t.cuda.is_available() else "cpu") # 只能单GPU运行
net = LeNet().to(device)
由于多GPU训练使用了nn.DataParallel(net, device_ids=gpu_ids) 对网络进行封装,因此在原始网络结构中添加了一层module。网络结构如下:
DataParallel( (module): LeNet( (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1)) (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1)) (fc1): Linear(in_features=400, out_features=120, bias=True) (fc2): Linear(in_features=120, out_features=84, bias=True) (fc3): Linear(in_features=84, out_features=10, bias=True) ))而不使用多GPU训练的网络结构如下:
LeNet( (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1)) (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1)) (fc1): Linear(in_features=400, out_features=120, bias=True) (fc2): Linear(in_features=120, out_features=84, bias=True) (fc3): Linear(in_features=84, out_features=10, bias=True))由于在测试模型时不需要用到多GPU测试,因此在保存模型时应该把module层去掉。如下:
if len(gpu_ids) > 1: t.save(net.module.state_dict(), "model.pth")else: t.save(net.state_dict(), "model.pth")以上这篇解决pytorch多GPU训练保存的模型,在单GPU环境下加载出错问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
这几天在一机多卡的环境下,用pytorch训练模型,遇到很多问题。现总结一个实用的做实验方式:多GPU下训练,创建模型代码通常如下:os.environ['CU
本文适合多GPU的机器,并且每个用户需要单独使用GPU训练。虽然pytorch提供了指定gpu的几种方式,但是使用不当的话会遇到outofmemory的问题,主
Pytorch多GPU运行设置可用GPU环境变量。例如,使用0号和1号GPU'os.environ["CUDA_VISIBLE_DEVICES"]='0,1'设
问题描述有时在加载已训练好的模型时,会出现outofmemory的错误提示,但仔细检测使用的GPU卡并没有再用且内存也没有超出。经查阅发现原来是训练模型时使用的
在定义图结构之前不用加入gpu:0,只有在session中计算之前在加入,否则的话会提示不能使用gpu保存模型等问题。withtf.device('/gpu:0