时间:2021-05-22
编辑距离
编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。一般来说,编辑距离越小,两个串的相似度越大。
例如将kitten一字转成sitting:('kitten' 和 ‘sitting' 的编辑距离为3)
sitten (k→s)
sittin (e→i)
sitting (→g)
Python中的Levenshtein包可以方便的计算编辑距离
包的安装: pip install python-Levenshtein
我们来使用下:
# -*- coding:utf-8 -*-import Levenshteintexta = '艾伦 图灵传'textb = '艾伦•图灵传'print Levenshtein.distance(texta,textb)上面的程序执行结果为3,但是只改了一个字符,为什么会发生这样的情况?
原因是Python将这两个字符串看成string类型,而在 string 类型中,默认的 utf-8 编码下,一个中文字符是用三个字节来表示的。
解决办法是将字符串转换成unicode格式,即可返回正确的结果1。
# -*- coding:utf-8 -*-import Levenshteintexta = u'艾伦 图灵传'textb = u'艾伦•图灵传'print Levenshtein.distance(texta,textb)接下来重点介绍下保重几个方法的作用:
计算编辑距离(也称Levenshtein距离)。是描述由一个字串转化成另一个字串最少的操作次数,在其中的操作包括插入、删除、替换。算法实现:动态规划。
计算汉明距离。要求str1和str2必须长度一致。是描述两个等长字串之间对应位置上不同字符的个数。
计算莱文斯坦比。计算公式 r = (sum – ldist) / sum, 其中sum是指str1 和 str2 字串的长度总和,ldist是类编辑距离。注意这里是类编辑距离,在类编辑距离中删除、插入依然+1,但是替换+2。
计算jaro距离,Jaro Distance据说是用来判定健康记录上两个名字是否相同,也有说是是用于人口普查,我们先来看一下Jaro Distance的定义。
两个给定字符串S1和S2的Jaro Distance为:
其中的m为s1, s2匹配的字符数,t是换位的数目。
两个分别来自S1和S2的字符如果相距不超过
时,我们就认为这两个字符串是匹配的;而这些相互匹配的字符则决定了换位的数目t,简单来说就是不同顺序的匹配字符的数目的一半即为换位的数目t。举例来说,MARTHA与MARHTA的字符都是匹配的,但是这些匹配的字符中,T和H要换位才能把MARTHA变为MARHTA,那么T和H就是不同的顺序的匹配字符,t=2/2=1。
两个字符串的Jaro Distance即为:
计算Jaro–Winkler距离,而Jaro-Winkler则给予了起始部分就相同的字符串更高的分数,他定义了一个前缀p,给予两个字符串,如果前缀部分有长度为ι的部分相同,则Jaro-Winkler Distance为:
dj是两个字符串的Jaro Distance
ι是前缀的相同的长度,但是规定最大为4
p则是调整分数的常数,规定不能超过25,不然可能出现dw大于1的情况,Winkler将这个常数定义为0.1
这样,上面提及的MARTHA和MARHTA的Jaro-Winkler Distance为:
dw = 0.944 + (3 * 0.1(1 − 0.944)) = 0.961个人觉得算法可以完善的点:
去除停用词(主要是标点符号的影响)
针对中文进行分析,按照词比较是不是要比按照字比较效果更好?
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家学习或者使用python能有所帮助,如果有疑问大家可以留言交流。
其他参考资料:
https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance
http://www.coli.uni-saarland.de/courses/LT1/2011/slides/Python-Levenshtein.html#Levenshtein-inverse
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例讲述了C#计算字符串相似性的方法。分享给大家供大家参考。具体如下:计算字符串相似性的办法很多,甚至最笨的办法可以挨个匹配,这里要讲的是使用莱文史特距离来
字符串的相似性比较应用场合很多,像拼写纠错、文本去重、上下文相似性等。评价字符串相似度最常见的办法就是:把一个字符串通过插入、删除或替换这样的编辑操作,变成另外
本文实例讲述了Java基于余弦方法实现的计算相似度算法。分享给大家供大家参考,具体如下:(1)余弦相似性通过测量两个向量之间的角的余弦值来度量它们之间的相似性。
K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因
如今各行各业的网站已经充斥整个互联网,这就造成一种非常普遍的现象,就是众多网站之间都存在着一定的相似性,这种相似性的特征在行业网站中尤为的严重。由于相似性的