Python+Redis实现布隆过滤器

时间:2021-05-22

布隆过滤器是什么

  布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。

布隆过滤器的基本思想

  通过一种叫作散列表(又叫哈希表,Hash table)的数据结构。它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit array)中的一个点。这样一来,我们只要看看这个点是不是1就可以知道集合中有没有它了

布隆过滤器的优缺点

优点:

  1.布隆过滤器的存储空间和插入/查询时间都是常数

  2.Hash函数相互之间没有关系,方便由硬件并行实现

  3.布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势

  4.布隆过滤器可以表示全集,其它任何数据结构都不能

缺点:

  1.存在一定的误算率,随着存入的元素数量增加,误算率随之增加

    (常见的补救办法是建立一个小的白名单,存储那些可能被误判的元素。但是如果元素数量太少,则使用散列表足矣)

  2.一般情况下不能从布隆过滤器中删除元素

    首先我们必须保证删除的元素的确在布隆过滤器里面. 这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。这就导致删除元素需要很高的成本。

正文

简单的python实现

pip install mmh3

对于安装报错,c++编译错误问题:可以安装 Microsoft Visual C++ Build Tools()

例子转载(https://')) # 打印此域名在通道里是否存在,存在返回1,不存在返回0# print(bf.is_exist('www.luyin.org')) # 打印此域名在通道里是否存在,存在返回1,不存在返回0

总结

以上所述是小编给大家介绍的Python+Redis实现布隆过滤器,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章