时间:2021-05-22
词云图
from pyecharts.charts import WordClouddef word1(): words= [ ("Sam S Club", 10000), ("Macys", 6181), ("Amy Schumer", 4386), ("Jurassic World", 4055), ("Charter Communications", 2467), ("Chick Fil A", 2244), ("Planet Fitness", 1868), ("Pitch Perfect", 1484), ("Express", 1112), ("Home", 865), ("Johnny Depp", 847), ("Lena Dunham", 582), ("Lewis Hamilton", 555), ("KXAN", 550), ("Mary Ellen Mark", 462), ("Farrah Abraham", 366), ("Rita Ora", 360), ("Serena Williams", 282), ("NCAA baseball tournament", 273), ("Point Break", 265), ] worldcloud = ( WordCloud() .add("", words, word_size_range=[20, 100]) .set_global_opts(title_opts=opt.TitleOpts(title="WorldCloud-shape-diamond")) ) # worldcloud = ( # WordCloud() # .add("", words, word_size_range=[20, 100], shape=SymbolType.DIAMOND) # .set_global_opts(title_opts=opt.TitleOpts(title="WorldCloud-shape-diamond")) # ) worldcloud.render("wordl.html") os.system("wordl.html")效果如下:
散点图
from pyecharts.charts import Scatterimport numpy as npdef sca(): x_data = np.linspace(0, 10, 30) y1_data = np.sin(x_data) y2_data = np.cos(x_data) # 绘制散点图 # 设置图表大小 figsise = opt.InitOpts(width="800px", height="600px") scatter = Scatter(init_opts=figsise) # 添加数据 scatter.add_xaxis(xaxis_data=x_data) scatter.add_yaxis(series_name="sin(x)散点图", #名称 y_axis=y1_data, # 数据 label_opts=opt.LabelOpts(is_show=False), # 数据不显示 symbol_size=15, # 设置散点的大小 symbol="triangle" # 设置散点的形状 ) scatter.add_yaxis(series_name="cos(x)散点图", y_axis=y2_data, label_opts=opt.LabelOpts(is_show=False)) scatter.render() os.system("render.html")效果如下:
饼状图
from pyecharts.charts import Piefrom pyecharts import options as optfrom pyecharts.faker import Faker as fadef pie1(): pie = ( Pie() .add("", [list(z) for z in zip(fa.choose(), fa.values())]) .set_global_opts(title_opts=opt.TitleOpts(title="pie-基本示例")) .set_series_opts(label_opts=opt.LabelOpts(formatter="{b}:{c}")) ) pie.render() os.system("render.html")def pie2(): pie = ( Pie() .add("", [list(z) for z in zip(fa.choose(), fa.values())], radius=["40%", "75%"]) .set_global_opts(title_opts=opt.TitleOpts(title="pie-示例"), legend_opts=opt.LegendOpts( orient="vertical", pos_top="15%", pos_left="2%" )) .set_series_opts(label_opts=opt.LabelOpts(formatter="{b}:{c}")) ) pie.render() os.system("render.html")def pie3(): pie = ( Pie() .add("", [list(z) for z in zip(fa.choose(), fa.values())], radius=["40%", "75%"], center=["25%", "50%"], rosetype="radius", label_opts=opt.LabelOpts(is_show=False)) .add("", [list(z) for z in zip(fa.choose(), fa.values())], radius=["30%", "75%"], center=["75%", "50%"], rosetype="area") .set_global_opts(title_opts=opt.TitleOpts(title="pie-玫瑰图示例")) ) pie.render() os.system("render.html")def pie4(): # 多饼图显示 pie = ( Pie() .add( "", [list(z) for z in zip(["剧情", "其他"], [25, 75])], center=["20%", "30%"], radius=[40, 60] ) .add( "", [list(z) for z in zip(["奇幻", "其他"], [24, 76])], center=["55%", '30%'], radius=[40, 60] ) .add( "", [list(z) for z in zip(["爱情", "其他"], [14, 86])], center=["20%", "70%"], radius=[40, 60] ) .add( "", [list(z) for z in zip(["惊骇", "其他"], [1, 89])], center=["55%", "70%"], radius=[40, 60] ) .set_global_opts( title_opts=opt.TitleOpts(title="pie-多饼图基本示例"), legend_opts=opt.LegendOpts( type_="scroll", pos_top="20%", pos_left="80%", orient="vertical" ) ) .set_series_opts(label_opts=opt.LabelOpts(formatter="{b}:{c}")) ) pie.render() os.system("render.html")直方图
from pyecharts.charts import Barfrom pyecharts import options as optfrom pyecharts.globals import ThemeTypefrom pyecharts.faker import Faker as faimport randomdef pye1(): # 生成随机数据 attr = fa.days_attrs v1 = [random.randrange(10, 150) for _ in range(31)] v2 = [random.randrange(10, 150) for _ in range(31)] # 初始化一个Bar对象,并设定一写初始化设置 bar = Bar(init_opts=opt.InitOpts(theme=ThemeType.WHITE)) # 添加数据 bar.add_xaxis(attr) # is_selected: 打开图表时是否默认加载 grap:不同系列的柱间距离,百分比; color:指定柱状图Label的颜色 bar.add_yaxis("test1", v1, gap="0", category_gap="20%", color=fa.rand_color()) bar.add_yaxis("test2", v2, is_selected=False, gap="0%", category_gap="20%", color=fa.rand_color()) # 全局配置 # title_opts:图标标题相关设置 # toolbox_opts: 工具栏相关设置 # yaxis_opts/xaxis_opts: 坐标轴相关设置 # axislabel_opts: 坐标轴签字相关设置 # axisline_opts: 坐标轴轴线相关设置 # datazoom_opts: 坐标轴轴线相关设置 # markpoint_opts: 标记点相关设置 # markpoint_opts:label_opts=opts.LabelOpts(is_show=False) 标签值是否叠加 # markline_opts:标记线相关设置 bar.set_global_opts(title_opts=opt.TitleOpts(title="主标题", subtitle="副标题"), toolbox_opts=opt.ToolboxOpts(), yaxis_opts=opt.AxisOpts(axislabel_opts=opt.LabelOpts(formatter="{value}/月"), name="这是y轴"), xaxis_opts=opt.AxisOpts( axisline_opts=opt.AxisLineOpts(linestyle_opts=opt.LineStyleOpts(color='blue')), name="这是x轴"), datazoom_opts=opt.DataZoomOpts() ) bar.set_series_opts(markpoint_opts=opt.MarkPointOpts(data=[opt.MarkPointItem(type_="max", name="最大值"), opt.MarkPointItem(type_="min", name="最小值"), opt.MarkPointItem(type_="average", name="平均值")]), markline_opts=opt.MarkLineOpts(data=[opt.MarkLineItem(type_="min", name="最小值"), opt.MarkLineItem(type_="max", name="最大值"), opt.MarkLineItem(type_="average", name="平均值")])) # 指定生成html文件路径 bar.render('test.html') os.system("test.html")效果如下
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
有如下的xml文件:复制代码代码如下:12下面介绍python解析xml文件的几种方法,使用python模块实现。方式1,python模块实现自动遍历所有节点:
本文实例讲述了python基于xmlparse实现解析cdatasection数据的方法,分享给大家供大家参考。具体实现方法如下:fromxml.dom.min
这篇文章主要介绍了基于Python实现ComicReaper漫画自动爬取脚本过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值
pyquery库是jQuery的Python实现,可以用于解析HTML网页内容,使用方法:复制代码代码如下:frompyqueryimportPyQueryas
思路改进原博主文章(PythonGUI–Tkinter简单实现个性签名设计)的代码,原先的代码是基于Python2的,我这份代码基于Python3并针对当前的网