时间:2021-05-22
第一:pandas.read_csv读取本地csv文件为数据框形式
data=pd.read_csv('G:\data_operation\python_book\chapter5\\sales.csv')第二:如果存在日期格式数据,利用pandas.to_datatime()改变类型
data.iloc[:,1]=pd.to_datetime(data.iloc[:,1])注意:=号,这样在原始的数据框中,改变了列的类型
第三:查看列类型
print(data.dtypes)
第四:方法一:保存至MYSQL【缺点耗时长】
利用MYSQLdb库,封装成一个类,实现创建表,添加数据的操作,缺点耗时长
class Jess_mysql(): """ 设置mysql类,实现创建数据框,表,及添加数据 """ def __init__(self): self.mysql=MySQLdb.connect(user=mysql_name,host=mysql_host,password=mysql_password,database=mysql_database) self.conn=self.mysql.cursor() def create_table(self,table_names,col_names): """ 创建表 :param table_names: 表名 :param col_names: 列名,列表格式 :return: """ tables=' varchar(20),'.join(['%s'] *len(col_names)) sql_yuju='create table if not exists `{t}` ({v} varchar(20))'.format(t=table_names,v=tables)#字段需要标注格式 ss=sql_yuju %(tuple(col_names)) print(ss) self.conn.execute(ss) self.mysql.commit() def add_data(self,table_name,col_names,col_data): """ :param table_name: 表名 :param col_names: 列名,字段名 :param col_data: 字段值 :return: """ colname=','.join(['%s']*len(col_names)) data=','.join(['%s']*len(col_data)) sql_yuju='INSERT INTO `{t}` ({name}) VALUES ({data});'.format(t=table_name,name=colname,data=data) ss=sql_yuju%(*col_names,*col_data) #print(ss) self.conn.execute(ss) self.mysql.commit()第五:利用sqlalchemy的create_engine()方法
1、创建连接
import sqlalchemy#engine=sqlalchemy.create_engine('mysql + mysqldb://root:123456@118.24.26.227:3306/python_yuny')engine=sqlalchemy.create_engine('mysql+mysqldb://{user}:{password}@{host}:3306/{database}'.format (user=mysql_name,password=mysql_password,host=mysql_host,database=mysql_database))2、利用pd.io.sql.to_sql()
pd.io.sql.to_sql(frame=data,name='yunying',con=engine,index=False,if_exists='append')注意相关参数的设置。
此外,保存到mysql中,需要注意日期格式的列,因为在mysql对应的field设置格式为varchar(20)后,原始的日期2015-8-9,写入数据库,只有2015,这需要两步操作。
a、上面第二目录的,利用pandas.to_datetime(,format='%Y-%m-%d') #format的格式要和原始字符2016-8-9格式一样
b、利用datetime库,实现format='%Y%m%d'
x=data.shape[0]for i in range(x): col_data=list(df.iloc[i,:]) col_data[1]=datetime.date.strftime(col_data[1],'%Y%d%m')•这一步后,日期格式由原始的2016-6-2,转为20160606,就可以以写入数据库对应的字段【其字段类型varchar(20)】
第六:读取mysql的数据
df=pd.read_sql('select * from %s'%table_name,con=engine,index_col=None)默认不设置索引列,可以自行指定索引列名。
总结
以上所述是小编给大家介绍的使用python的pandas库读取csv文件保存至mysql数据库,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
Python从MySQL数据库中导出csv文件处理csv文件导入MySQL数据库importpymysqlimportcsvimportcodecsdefget
项目实现知识点:Pandas库及pyecharts库Pandas:数据分析和处理工具。pd.read_csv():读取csv文件。pyecharts:绘图库,提
python读取txt文件:(思路:先打开文件,读取文件,最后用for循环输出内容)1、读取1.1基于pythoncsv库#3.读取csv至字典x,yimpor
Python操作Excle文件:使用xlwt库将数据写入Excel表格,使用xlrd库从Excel读取数据。从excle读取数据存入数据库1、导入模块:impo
之前一直在写有关scrapy爬虫的事情,今天我们看看使用scrapy如何把爬到的数据放在MySQL数据库中保存。有关python操作MySQL数据库的内容,网上