初学Python函数的笔记整理

时间:2021-05-22

定义
返回单值

def my_abs(x): if x >= 0: return x else: return -x

返回多值

返回多值就是返回一个tuple

import math def move(x, y, step, angle=0): nx = x + step * math.cos(angle) ny = y - step * math.sin(angle) return nx, ny

空函数

def nop(): pass

指定默认参数

必选参数在前,默认参数在后。默认参数需指向不可变对象(默认参数值在函数定义时被计算)

def power(x, n=2): s = 1 while n > 0: n = n - 1 s = s * x return s

可变参数

def calc(*numbers): sum = 0 for n in numbers: sum = sum + n * n return sum

调用可变参数的函数方法

>>> calc(1, 2)5>>> calc()0>>> nums = [1, 2, 3]>>> calc(*nums)14

关键字参数

def person(name, age, **kw): print 'name:', name, 'age:', age, 'other:', kw

调用关键字参数的方法

>>> person('Michael', 30)name: Michael age: 30 other: {}>>> person('Bob', 35, city='Beijing')name: Bob age: 35 other: {'city': 'Beijing'}>>> person('Adam', 45, gender='M', job='Engineer')name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}>>> kw = {'city': 'Beijing', 'job': 'Engineer'}>>> person('Jack', 24, **kw)name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

注:

参数定义的顺序必须是:必选参数、默认参数、可变参数和关键字参数。
对于任意函数,都可以通过类似func(*args, **kw)的形式调用它,无论它的参数是如何定义的。

递归

如果一个函数在内部调用自身本身,这个函数就是递归函数。
尾递归

在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。
高阶函数

  • 变量可以指向函数(函数可以赋值给一个变量)
  • 函数名也是变量(函数名可以赋值其他值)
  • 函数可以做为函数的参数(高阶函数)

map(func, list)

map()函数接收两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序列的每个元素,并把结果作为新的list返回。

>>> def f(x):... return x * x...>>> map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])[1, 4, 9, 16, 25, 36, 49, 64, 81]reduce(func_with_two_params, list)

reduce把一个函数作用在一个序列[x1, x2, x3…]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算。

reduce(f, [x1, x2, x3, x4])#相当于:f(f(f(x1, x2), x3), x4) >>> def add(x, y):... return x + y...>>> reduce(add, [1, 3, 5, 7, 9])25

filter(func_return_bool, list)

把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。

def is_odd(n): return n % 2 == 1 filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15])# 结果: [1, 5, 9, 15]

sorted

对于两个元素x和y,如果认为x < y,则返回-1,如果认为x == y,则返回0,如果认为x > y,则返回1,

>>> sorted([36, 5, 12, 9, 21])[5, 9, 12, 21, 36]

高阶函数用法

def reversed_cmp(x, y): if x > y: return -1 if x < y: return 1 return 0 >>> sorted([36, 5, 12, 9, 21], reversed_cmp)[36, 21, 12, 9, 5]

函数做为返回值

def lazy_sum(*args): def sum(): ax = 0 for n in args: ax = ax + n return ax return sum >>> f = lazy_sum(1, 3, 5, 7, 9)>>> f<function sum at 0x10452f668>>>> f()25

注:每次调用lazy_sum()都会返回一个新的函数,即使传入相同的参数。
闭包

def count(): fs = [] for i in range(1, 4): def f(): return i*i fs.append(f) return fs f1, f2, f3 = count()>>> f1()9>>> f2()9>>> f3()9

原因是调用count的时候循环已经执行,但是f()还没有执行,直到调用其时才执行。所以返回函数不要引用任何循环变量,或者后续会发生变化的变量。
匿名函数(lambda表达式)

等价于:

def f(x): return x * x

关键字lambda表示匿名函数,冒号前面的x表示函数参数。
匿名函数做为返回值

def build(x, y): return lambda: x * x + y * y

装饰器(@func)

在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator),本质上,decorator就是一个返回函数的高阶函数。

def log(func): def wrapper(*args, **kw): print 'call %s():' % func.__name__ return func(*args, **kw) return wrapper @logdef now(): print '2013-12-25' >>> now()call now():2013-12-25 #相当于执行: now = log(now)回到顶部带参数的装饰器 def log(text): def decorator(func): def wrapper(*args, **kw): print '%s %s():' % (text, func.__name__) return func(*args, **kw) return wrapper return decorator @log('execute')def now(): print '2013-12-25' #执行结果>>> now()execute now():2013-12-25 #相当于执行: >>> now = log('execute')(now)

剖析:首先执行log('execute'),返回的是decorator函数,再调用返回的函数,参数是now函数,返回值最终是wrapper函数。

__name__
由于函数的__name__已经改变,依赖于此的代码就会出错。因此使用functools.wraps。

import functools def log(func): @functools.wraps(func) def wrapper(*args, **kw): print 'call %s():' % func.__name__ return func(*args, **kw) return wrapper #对于带参函数 import functools def log(text): def decorator(func): @functools.wraps(func) def wrapper(*args, **kw): print '%s %s():' % (text, func.__name__) return func(*args, **kw) return wrapper return decorator偏函数(固定函数默认值)
>>> import functools>>> int2 = functools.partial(int, base=2)>>> int2('1000000')64>>> int2('1010101')85 #相当于: def int2(x, base=2): return int(x, base) max2 = functools.partial(max, 10)

相当于为max函数指定了第一个参数

max2(5, 6, 7) #相当于: max(10, 5, 6, 7)

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章